Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Real-Time Biometric Monitoring for Cognitive Workload Detection in High Demand Professions: A Narrative Review

General Science    Start Submission

Reginald B OHara*, Shelby C Loftis and Cynthia Rando

Volume6-Issue11
Dates: Received: 2025-11-19 | Accepted: 2025-11-26 | Published: 2025-11-28
Pages: 1764-1774

Abstract

Background: Wearable technology and multidimensional data analysis present significant opportunities for the continuous, real-time monitoring of cognitive overload, potentially identifying early warning signals before performance degrades. However, key challenges exist, including ensuring data security, sensor accuracy, consistent calibration, accurate data processing, network limitations, and individual variability in responses.

Objectives: (1) To explore the theoretical foundations of mental workload, (2) to investigate methods for integrating data from multiple sources, (3) to evaluate the role of Machine Learning (ML) and Artificial Intelligence (AI) in predicting early indicators of cognitive overload, (4) to examine ethical, privacy, and security concerns related to AI and ML applications, and (5) to propose directions for future empirical research on the validity and reliability of real-time biometric monitoring.

Methods: Following the framework for Narrative Reviews (NRs) and the SANRA (Scale for the Assessment of NR articles) quality criteria, a comprehensive literature search was conducted across Google Scholar, PubMed Central, and electronic university databases from 1981 to 2025. Articles were selected based on relevance to the objectives and the primary aim using predefined search terms.

Results: After 27 articles were excluded for not meeting established inclusion criteria, a total of 66 articles were assessed for eligibility. After the final analysis, 39 full-text articles were included.

Conclusion: Integrating physiological and behavioral data with subjective assessments analyzed through AI and ML, may enable early detection of cognitive overload in high-stress environments. Such approaches could improve physical and cognitive performance, provide timely alerts for work-recovery cycles, and reduce task error rates. Presently, there is a lack of longitudinal studies addressing data standardization, sensor validation, and cybersecurity. Future empirical research is necessary to evaluate these technologies before their widespread use in critical sectors such as healthcare, public safety, air traffic control, and industry.

FullText HTML FullText PDF DOI: 10.37871/jbres2228


Certificate of Publication




Copyright

© 2025 Hara RBO, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

O’Hara RB, Loftis SC, Rando C. Real-Time Biometric Monitoring for Cognitive Workload Detection in High Demand Professions: A Narrative Review. J Biomed Res Environ Sci. 2025 Nov 28; 6(11): 1764-1774. doi: 10.37871/jbres2228, Article ID: JBRES2228, Available at: https://www.jelsciences.com/articles/jbres2228.pdf


Subject area(s)

References


  1. Lucchese A, Padovano A, Facchini F. Comprehensive systemic literature review on cognitive workload: Trends on methods, technologies and case studies. IET Collab Intell Manuf. 2025;1(7):70025. doi: 10.1049/cim2.70025.
  2. Mahdavi N, Tapak L, Darvishi E, Doosti-Irani A, Shafiee Motlagh M. Unraveling the interplay between mental workload, occupational fatigue, physiological responses and cognitive performance in office workers. Sci Rep. 2024 Aug 1;14(1):17866. doi: 10.1038/s41598-024-68889-4. PMID: 39090219; PMCID: PMC11294527.
  3. Subramanyam MP, Muralidhara P, Muralidhara P. Mental workload and cognitive fatigue: A study. J Manag Res. 2013.
  4. Douglas HE, Raban MZ, Walter SR, Westbrook JI. Improving our understanding of multi-tasking in healthcare: Drawing together the cognitive psychology and healthcare literature. Appl Ergon. 2017 Mar;59(Pt A):45-55. doi: 10.1016/j.apergo.2016.08.021. Epub 2016 Sep 11. PMID: 27890158.
  5. Bustos D, Guedes JC, Baptista JS, Vaz MP, Costa JT, Fernandes RJ. Applicability of Physiological Monitoring Systems within Occupational Groups: A Systematic Review. Sensors (Basel). 2021 Oct 30;21(21):7249. doi: 10.3390/s21217249. PMID: 34770556; PMCID: PMC8587311.
  6. Zakeri Z, Arif A, Omurtag A, Breedon P, Khalid A. Multimodal assessment of cognitive workload using neural, subjective and behavioural measures in smart factory settings. Sensors (Basel). 2023 Nov 2;23(21):8926. doi: 10.3390/s23218926. PMID: 37960625; PMCID: PMC10647588.
  7. Seong S, Park S, Ahn YH, Kim H. Development of an integrated fatigue measurement system for construction workers: a feasibility study. BMC Public Health. 2022 Aug 22;22(1):1593. doi: 10.1186/s12889-022-13973-5. PMID: 35996096; PMCID: PMC9394036.
  8. Furberg RD, Taniguchi T, Aagaard B, Ortiz AM, Hegarty-Craver M, Gilchrist KH, Ridenour TA. Biometrics and policing: a protocol for multichannel sensor data collection and exploratory analysis of contextualized psychophysiological response during law enforcement operations. JMIR Res Protoc. 2017 Mar 17;6(3):e44. doi: 10.2196/resprot.7499. PMID: 28314707; PMCID: PMC5375974.
  9. Hosseini S, Gottumukkala R, Katragadda S, Bhupatiraju RT, Ashkar Z, Borst CW, Cochran K. A multimodal sensor dataset for continuous stress detection of nurses in a hospital. Sci Data. 2022 Jun 1;9(1):255. doi: 10.1038/s41597-022-01361-y. PMID: 35650267; PMCID: PMC9159985.
  10. Alberdi A, Aztiria A, Basarab A, Cook DJ. Using smart offices to predict occupational stress. Int J Ind Ergon. 2018 Sep;67:13-26. doi: 10.1016/j.ergon.2018.04.005. Epub 2018 May 26. PMID: 39896836; PMCID: PMC11784994.
  11. Ferrari R. Writing narrative style literature reviews. Med Writ. 2015;24(4):230-235. doi: 10.1179/2047480615Z.000000000329.
  12. Baethge C, Goldbeck-Wood S, Mertens S. SANRA-a scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019 Mar 26;4:5. doi: 10.1186/s41073-019-0064-8. PMID: 30962953; PMCID: PMC6434870.
  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71. doi: 10.1136/bmj.n71. PMID: 33782057; PMCID: PMC8005924.
  14. Wickens CD. Processing resources in attention dual task performance and workload assessment. Champaign (IL): University of Illinois at Urbana-Champaign. Engineering Psychology Program. 1981.
  15. Sweller J. Cognitive load during problem solving: Effects on learning. Cogn Sci. 1988;12(2):257-285. doi: 10.1207/s15516709cog1202_4.
  16. Gugerty L, Rando C, Rakauskas M, Brooks J, Olson H. Differences in remote versus in-person communications while performing a driving task. Proc Hum Factors Ergon Soc Annu Meet. 2003;47(16):1855-1859. doi: 10.1177/154193120304701605.
  17. Quandt M, Stern H, Zeitler W, Freitag M. Human-centered design of cognitive assistance systems for industrial work. Procedia CIRP. 2022;107:233-238. doi: 10.1016/j.procir.2022.04.039.
  18. Meylani R. Innovations with schema theory: Modern implications for learning, memory, and academic achievement. Int J Multidiscip Res. 2024. doi: 10.36948/ijfmr.2024.v06i01.13785.
  19. Corrigan SL. Soldier performance management: The utility of heart rate variability to evaluate allostatic load [dissertation]. 2022.
  20. Macartney MJ, Larsen P, Gibson N, Michael S, Drain J, Peoples GE, Groeller H. Overnight sleeping heart rate variability of Army recruits during a 12-week basic military training course. Eur J Appl Physiol. 2022 Sep;122(9):2135-2144. doi: 10.1007/s00421-022-04987-3. Epub 2022 Jul 14. PMID: 35833968; PMCID: PMC9381457.
  21. Bernadine C, Nanda N, Vijayalakshmi R, Thilaga M, Naga D, Nabaraj D. Breaking the camel's back: Can cognitive overload be quantified in the human brain? Procedia Soc Behav Sci. 2013;97:21-29. doi: 10.1016/j.sbspro.2013.10.200.
  22. Tajmirriahi M, Rabbani H. A Review of EEG-based Localization of Epileptic Seizure Foci: Common Points with Multimodal Fusion of Brain Data. J Med Signals Sens. 2024 Jul 25;14:19. doi: 10.4103/jmss.jmss_11_24. PMID: 39234592; PMCID: PMC11373807.
  23. Kostenko A, Rauffet P, Chauvin C, Coppin G. A dynamic closed-looped and multidimensional model for mental workload evaluation. IFAC-PapersOnLine. 2016;49(19):549-554. doi: 10.1016/j.ifacol.2016.10.621.
  24. Paxion J, Galy E, Berthelon C. Mental workload and driving. Front Psychol. 2014 Dec 2;5:1344. doi: 10.3389/fpsyg.2014.01344. PMID: 25520678; PMCID: PMC4251303.
  25. Roscoe AH, Ellis GA. A subjective rating scale for assessing pilot workload in flight: A decade of practical use. Farnborough (UK): Royal Aerospace Establishment, Procurement Executive, Ministry of Defense. 1990.
  26. Shi Y, Du J, Worthy DA. The impact of engineering information formats on learning and execution of construction operations: A virtual reality pipe maintenance experiment. Autom Constr. 2020;119:103367. doi: 10.1016/j.autcon.2020.103367.
  27. Amal S, Safarnejad L, Omiye JA, Ghanzouri I, Cabot JH, Ross EG. Use of Multi-Modal Data and Machine Learning to Improve Cardiovascular Disease Care. Front Cardiovasc Med. 2022 Apr 27;9:840262. doi: 10.3389/fcvm.2022.840262. PMID: 35571171; PMCID: PMC9091962.
  28. Bhatti E, Kaur P. Advances in sensor technologies for breast cancer detection: a comprehensive review of imaging and non-imaging approaches. Discov Artif Intell. 2025;5(168). doi: 10.1007/s44163-025-00443-1.
  29. Merino-Olague M, Iriarte X, Castellano-Aldave C, Plaza A. Hybrid modeling and identification of mechanical systems using physics-enhanced machine learning. Eng Appl Artif Intell. 2025;159:111762. doi: 10.1016/j.engappai.2025.111762.
  30. Xenos G, Serpanos D. Cross-silo federated learning in security operations center for effective malware detection. Int J Inf Secur. 2025. doi: 10.1007/s10207-025-01101-4.
  31. Javeed H, Carlo A. Human-centered simulation models for adaptive scheduling in advanced manufacturing systems. ResearchGate. 2024. doi: 10.13140/RG.2.2.27596.53126.
  32. Suram S, Miryala RK. Wearable technologies in human resource management: A comprehensive analysis of adoption and its impact. ANU J Commer Manag. 2024. doi: 10.6084/m9.figshare.25484752.v1.
  33. Mehraeen E, Ghazisaeedi M, Farzi J, Mirshekari S. Security challenges in healthcare cloud computing: A systematic review. Global J Health Sci. 2017;9(3):157. doi: 10.5539/gjhs.v9n3p157.
  34. Cilliers L. Wearable devices in healthcare: Privacy and information security issues. Health Inf Manag. 2020 May-Sep;49(2-3):150-156. doi: 10.1177/1833358319851684. Epub 2019 May 30. PMID: 31146589.
  35. Mehrtak M, SeyedAlinaghi S, MohsseniPour M, Noori T, Karimi A, Shamsabadi A, Heydari M, Barzegary A, Mirzapour P, Soleymanzadeh M, Vahedi F, Mehraeen E, Dadras O. Security challenges and solutions using healthcare cloud computing. J Med Life. 2021 Jul-Aug;14(4):448-461. doi: 10.25122/jml-2021-0100. PMID: 34621367; PMCID: PMC8485370.
  36. Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors (Basel). 2023 Nov 29;23(23):9498. doi: 10.3390/s23239498. PMID: 38067871; PMCID: PMC10708748.
  37. Svertoka E, Saafi S, Rusu-Casandra A, Burget R, Marghescu I, Hosek J, Ometov A. Wearables for Industrial Work Safety: A Survey. Sensors (Basel). 2021 Jun 2;21(11):3844. doi: 10.3390/s21113844. PMID: 34199446; PMCID: PMC8199604.
  38. Awumey E, Das S, Forlizzi J. A systematic review of biometric monitoring in the workplace: Analyzing socio-technical harms in development, deployment, and use. FAccT '24: Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency; Brazil: 2024. p.920-932. doi: 10.1145/3630106.3658945.
  39. Li J, Washington P. A Comparison of Personalized and Generalized Approaches to Emotion Recognition Using Consumer Wearable Devices: Machine Learning Study. JMIR AI. 2024 May 10;3:e52171. doi: 10.2196/52171. PMID: 38875573; PMCID: PMC11127131.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search