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Abstract

Background: Wearable technology and multidimensional data analysis present
significant opportunities for the continuous, real-time monitoring of cognitive overload,
potentially identifying early warning signals before performance degrades. However,
key challenges exist, including ensuring data security, sensor accuracy, consistent
calibration, accurate data processing, network limitations, and individual variability in
responses.

Objectives: (1) To explore the theoretical foundations of mental workload, (2) to
investigate methods for integrating data from multiple sources, (3) to evaluate the role
of Machine Learning (ML) and Artificial Intelligence (Al) in predicting early indicators of
cognitive overload, (4) to examine ethical, privacy, and security concerns related to Al
and ML applications, and (5) to propose directions for future empirical research on the
validity and reliability of real-time biometric monitoring.

Methods: Following the framework for Narrative Reviews (NRs) and the SANRA
(Scale for the Assessment of NR articles) quality criteria, a comprehensive literature
search was conducted across Google Scholar, PubMed Central, and electronic university
databases from 1981 to 2025. Articles were selected based on relevance to the
objectives and the primary aim using predefined search terms.

Results: After 27 articles were excluded for not meeting established inclusion
criteria, a total of 66 articles were assessed for eligibility. After the final analysis, 39 full-
text articles were included.

Conclusion: Integrating physiological and behavioral data with subjective
assessments analyzed through Al and ML, may enable early detection of cognitive
overload in high-stress environments. Such approaches could improve physical and
cognitive performance, provide timely alerts for work-recovery cycles, and reduce
task error rates. Presently, there is a lack of longitudinal studies addressing data
standardization, sensor validation, and cybersecurity. Future empirical research is
necessary to evaluate these technologies before their widespread use in critical sectors
such as healthcare, public safety, air traffic control, and industry.
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Introduction

Mental Workload (MWL), often termed Cognitive
Workload (CWL), refers to the cognitive effort
required to effectively perform and complete a task
at a specific moment [1]. CWL is influenced by task
complexity, mental effort, and time pressure to
meet task goals [1-3]. The brain functions much like
a processing system. For example, when it receives
an overload of information, particularly during
multitasking, its efficiency declines, increasing the
probability of mistakes and slower task performance.

In recent years, employee health and stress
have increased markedly, likely because of rapid
technological growth and advancements in
Information Technology (IT), such as Artificial
Intelligence (AI), robotic process automation,
remote work platforms, team collaboration tools,
and workforce analytics, which continuously track
employee performance [2]. Although these evolving
technologies are helpful, they can also increase
employees’ cognitive demands. For instance, the
increase in clinical settings and the integration of
IT, including electronic medical records, patient
monitoring systems, and communication tools, is
designed to improve the delivery of patient care.
However, these systems require clinicians and nurses
to divide their attention between multiple platforms
and patient-care tasks, thereby encouraging
multitasking.

Frequent task-switching can overload mental
resources, leading to increased error rates [4].
Multitasking increases the mental load by pushing the
brain beyond its cognitive reserves, often resulting
in task errors, safety risks, and cognitive processing
delays, particularly in high-pressure environments
where rapid and accurate performance is required.
Overload likely occurs not because a person can truly
focus on multiple tasks at once but because when
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individuals multitask, the brain is compelled to switch
rapidly between tasks, which may exhaust mental
resources, disrupt focus, and increase the chance of
errors [1].

The emerging interest and increasing adoption
of wearable biometric sensors play a critical role in
enabling rapid collection, processing, and analysis
of neurophysiological and behavioral pattern data in
Real-Time (RT) contexts [1,2,4]. As mental workload
increases, so does the risk of human error, especially
in work settings that require sustained attention
and rapid decision making under time constraints.
To counteract these risks, non-invasive biometric
monitoring systems offer a promising solution by
enabling rapid responses and individualized targeted
interventions. These systems assess the RT indicators
of brain activity, heart rate, Heart Rate Variability
(HRV), pupil dilation, and fixation to detect early
signs of overload [1,4-6]. By continuously monitoring
these physiological signals, biometric sensors can
help mitigate critical errors, improve employee
safety and health, and sustain productivity, thereby
enhancing performance metrics.

Individuals in demanding roles can greatly
benefit from RT biometric monitoring systems,
which help prevent injuries, sustain productivity,
preserve health, and minimize errors. For instance,
construction workers often experience significant
occupational fatigue because of the mental and
physically demanding nature of their work,
which often requires working in various types of
environments (e.g., outside) [7]. Fatigue leads to
a higher risk of errors and diminished awareness
of potentially hazardous situations, resulting in
potential catastrophic errors. In 2019, construction
workers reported more than 200,000 cases of work-
related injuries and illnesses, highlighting the
occupational risks present in this sector of industry,
along with 79,700 missed workdays, all of which
negatively affected productivity [7]. These findings
underscore theimportance of addressing occupational
fatigue not only in construction but also in other
demanding occupations such as nursing, emergency
responders (e.g., fire, police), and specialized
industrial technicians [7-9]. Integrating multimodal
sensor datasets with fatigue measurement systems
to capture RT biometric data can play a critical role in
the early detection of mental fatigue [5,6]. However,
in many high-pressure occupations, employees
often lack access to RT monitoring systems that can
detect mental overload before it leads to task errors,
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declining mental health, or decreased performance
[10]. Data relevant to mental and physical stress
is typically gathered after stressful incidents have
occurred rather than during RT work conditions [1].

This Narrative Review (NR) offers a distinct
contribution to the field by exploring advancements
in Artificial Intelligence (AI)-based prediction
techniques that integrate multidimensional data to
assess cognitive workload in real-time occupational
environments. Prior reviews often only focus on use
of single sensor systems or theoretical constructs.
However, this review bridges physiological,
behavioral, subjective, and performance measures
for early detection of cognitive overload. Lastly, and
perhaps most importantly, it emphasizes real-world
application in high-stress occupational contexts,
addressing implementation barriers, ethical issues,
and potential pathways for future empirical validation.

The primary aim of this NR was to examine the
scientific,technological,andfeasibilityof RTbiometric
monitoring systems for the early detection and
management of MWL in high-demand occupations.
The objectives of this review were: (1) to explore
the theoretical foundations of MWL, (2) to evaluate
various biometric modalities and performance
indicators, (3) to examine the potential application
of Al and Machine Learning (ML) to further enhance
RT monitoring accuracy, (4) to understand ethical,
security, and privacy challenges, and (5) based on the
first four objectives, we recommend future empirical
research.

Methods
Inclusion criteria for selection of studies

Primary and secondary sources were eligible for
inclusion and had to be written in English (Table 1).
Peer-reviewed, open access articles were eligible for
inclusion and had to address the NRs central aim and
five objectives. Articles that focused on the use of
multimodal data, biosensor modalities for detecting
cognitive overload, and the integration of biometric
sensors for real-time monitoring of cognitive load
were eligible for inclusion. Finally, articles that
adequately described the scientific, technological,
and feasibility of real-time biometrics monitoring
for integration into high demand occupations were
eligible for analysis.

Search strategy and screening

This Narrative Review (NR) was conducted
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according to the general framework of NRs outlined
by Ferrari [11] alongside NR quality criteria developed
by Baethge C, et al. [12].

Peer reviewed primary and secondary sources
focused on cognitive workload, real-time biometric
monitoring, and multi-modal data assessment
methods that were identified by searching Google
Scholar, PubMed Central, and electronic university
databases between 1981 and 2025. The key search
terms for each database were “biometric sensors,”

“cognitive  overload,” “mental  workload,”
“multimodal data,” “occupational stress,” “artificial
intelligence,” “predictive analytics,” and “electronic

health records.” Finally, we reviewed additional
relevant reference lists of the eligible full-text
articles.

Source selection and data extraction

A primary literature search on Google Scholar
using Boolean operators to separate the search terms
“biometric sensors” OR “cognitive OR “mental” AND
“multimodal data” AND “biometric sensors” from
1981 to 2025, focusing on review articles, systematic
reviews, observational studies, and government
technical reports from full-text, open-access articles.
We determined the key concepts for the review and
navigated databases for proper keywords directly
related to the topics of interest [11]. Zotero software
was used to extract the results for the initial search
strategy in the Google Scholar advanced search filter
by entering the search terms “biometric sensors”,
which yielded 10,200 results. The second search
focused on “cognitive workload” AND “multimodal
data,” generating 755 combined results. For the third
search, we applied the key terms “mental workload”

Table 1: Inclusion criteria.
Original research articles
Systematic reviews
Defense technical reports
Doctoral dissertations

Full-text, open access peer reviewed articles

o~ lw =

Populations(s): high demand occupations, robotic tech and
smart factory

7. Context: use of multimodal data, use of biosensor modalities in
workplace

8. Integration of biometric sensors for real-time monitoring of
mental workload

9. Published between 1981-2025

10. Written in the English language
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AND “occupational stress,” which produced 3,422
results. A fourth Google Scholar advanced search
highlighted the terms “artificial intelligence,”
“predictive analytics,” AND “electronic health
records,” yielding 16,800 articles.

The same search strategy was performed in the
electronic university library in the MINERQUEST
search bar, choosing PubMed Central as the secondary
database search, using the terms “biometric sensors”
OR “cognitive workload” AND “multimodal data” for
the period 1981—-2025. The first search yielded 9,230
results with varying degrees of relevance to specific
inclusion criteria. We applied filters for the second
search using only the available online and peer-
reviewed data. We narrowed the resource type to
only articles, review articles, reports, and first online
articles, which yielded 946 results.

The27reports excluded lacked real -time biometric
data relevance, focused primarily on theoretical
models without applied sensor technologies, or did
not provide open-access full texts. Further, studies
not aligned with the five primary objectives of this
review or those with insufficient methodological rigor
were excluded. Two reviewers (RO, SL) independently
reviewed titles and abstracts that were included in
the initial database search against inclusion and
exclusion criteria, then searched and selected full-
text articles meeting the inclusion criteria. Articles
were then independently appraised by both authors
(RO, SL). When there were disagreements on the
overall appraisal process, both reviewers met to
discuss the issue until they agreed. Both authors
(RO, SL) developed a data extraction form, which
was pilot tested prior to the database search and then
revised after each reviewer appraised a minimum
of three full-text articles. The final list of research
data characteristics extracted and examined from
all articles included (1) author(s) and year, (2) article
type, (3) primary aim, (4) method, and (5) key results.

Results

Figure 1 shows the NRs flowchart for selecting
sources. Articles were screened for eligibility, based
on the established inclusion criteria. Thirty-nine
articles were included for extensive review. Articles
selected for inclusion consisted of the following: (1)
primary research articles (n = 19), reviews (n = 12),
systematic reviews (n = 5), defense technical reports
(n =2) and a doctoral thesis (n = 1).
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Discussion
Theoretical foundations

The concept of mental (cognitive) workload is
grounded in Wicken’s Multiple Resource Theory
(MRT) and Sweller’s Cognitive Load Theory
(CLT) [14,15]. MRT posits that the brain processes
information through separate cognitive channels
(e.g., visual, auditory), rather than relying on a single
unified cognitive resource. Tasks competing for
the same channel can cause interference, partially
explaining why multitasking sometimes succeeds but
often impairs performance [14].

CLT builds on this by asserting that the brain can
only process a limited amount of new information at
once, particularly when the content is complex. CLT
outlines three types of cognitive load: (1) intrinsic
load, tied to the inherent complexity of the material,
(2) extraneous load, caused by poorly designed
instructions or interfaces, and (3) germane load,
referring to the mental effort necessary to build
understanding or form mental models [15].

Wickens further emphasized that different tasks
engage different cognitive resources. For instance,

[ Identificati

of studies via datab

Identification

) |

Screening

[ Included | |

Records removed before

Records identified from: screening (n =21305)
Databases (n=41353) Duplicate records
removed (n = 16065)
Google Scholar (n=31177) Beceords removed for
PubMed (n = 10176) other reasons (n = 5240)
Records screened Records excluded
(n = 20048) (n=19322)

Records sought for retrieval

Full-text not obtained
(n=660)

{n=726)
|

Reports assessed for
eligibility
(n =66)

Reports excluded: (n =27)
Mot English language
Full-text not accessible
Out of scope
Abstracts

Studies included in review
(n=239)

Figure 1 Flow chart of literature selection [13].
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driving uses visual-spatial channels while conversing
relies on auditory-verbal functions such as listening
and speaking. While tasks that span multiple sensory
systems can be manageable, success also depends
on factors such as situational awareness and self-
regulation. Research shows thatin-person passengers
often adjust their conversation pace during complex
driving conditions, helping reduce cognitive load [16].
In contrast, remote phone conversations lack visual
cues, even when tasks are spread across different
cognitive channels [14,16,17].

To enhance employee performance, organizations
applying CLT may consider schema-focused training
that involves repeated exposure to practical, real-
world situations, allowing them to build automatic
responses and reduce the intrinsic load during a
real crisis [18]. Reducing extraneous load may be
achieved by simplifying tools and interfaces, through
intuitive dashboards or straightforward protocols
that minimize the cognitive effort needed to
interpret information under stressful conditions [17].
Additionally, large information inputs can decrease
brain load when broken down into step-by-step flows
and the use of external memory aids, such as visual
cues, reminders, or auto-calculations [18].

Biometric sensor modalities and mental
workload

This section outlines practical biometric sensor

modalities and evaluation measures for continuously
Monitoring Mental Workload (MWL) in Real-Time
(RT) and real-world occupational settings. These
measures, drawn from the scientific literature,
are not exhaustive, as their applicability may vary
based on task type, complexity, and demands. The
goal is to systematically collect reliable data with
minimal variation across days, weeks, or months.
To be effective, the devices used must show both
validity, measuring what they are intended to
measure and reliability, producing consistent results
over time. Since mental workload is a multifaceted
construct that varies by occupation, it is important
to consider the mental demands, stress levels, and
task complexity specific to each occupational role.
Improving predictive accuracy requires the collection
and analysis of multidimensional data sources,
including physiological metrics, task performance
metrics, subjective reports, and task complexity.
The evaluation measures presented in the following
sections offer a comprehensive overview of these
data sources, supporting their inclusion in future
multimodal assessment studies.

Physiological and behavioral measures

Heart Rate Variability (HRV),
Electroencephalography (EEG), and Electrodermal
(EDA). HRV, a marker of autonomic nervous system
regulation, reflects how the body responds to both
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physical and emotional stress and is widely used
to assess workload fluctuations [19,20]. While it
offers real-time insights, its interpretation can
be influenced by factors such as sleep quality,
cardiovascular fitness, and emotional state. EEG
and EDA are non-invasive physiological measures
routinely used to examine cognitive workload
and emotional stress. EEG records brain electrical
activity through scalp-mounted electrodes. These
signals capture fluctuations in brain wave patterns
associated with cognitive strain, emotional stress,
and fatigue [1,21]. EEG enables continuous, objective
monitoring of mental workload during tasks without
interfering with performance, making it effective for
tracking time-dependent changes in brain activity
[21,22]. EDA measures changes in skin conductivity
caused by sweat gland activity, which is regulated by
the body’s stress-response system [1,5]. Increases in
EDA signal heightened stress, emotional arousal, and
mental workload. As a wearable and non-intrusive
method, EDA effectively detects early signs of stress
by capturing involuntary physiological responses in
high-demand environments [5].

Respiratory Rate (RR): RR patterns depict how
stress and cognitive load are related, as both the
breathing rate and rhythm routinely shift in response
tomental or emotional stress. Higher mental demands
routinely cause breathing to become faster and more
uniform, reducing the variability in respiratory
patterns. Monitoring these changes in respiration
provides a non-invasive method for tracking
physiological indicators of stress and cognitive effort
during task performance [2].

Eye tracking: Eye-tracking devices, which are
minimally invasive, measure visual attention by
monitoring measures such as blink frequency, gaze
duration, pupil size, and fixation periods [1]. With
increased MWL, fixation patterns may become
more focused, and the blink rate decreases. These
indicators can provide valuable data on attention,
visual processing efficiency, and cognitive load
during complex task execution or interaction with
work interfaces [1].

Subjective and performance measures

NASA-TLX (Task Load Index). The NASA TLX is a
widely used multidimensional tool designed to assess
perceived mental and physical workload during task
performance, particularly in high-stakes ecosystems
like aerospace, healthcare, first response, and
human-machine interaction settings [23,24]. It also

JOURNAL OF BIOMEDICAL RESEARCH & ENVIRONMENTAL SCIENCES Issh:| 2766-2276

has applications in general workplace assessments
to pinpoint overly complex or demanding tasks.
Participants rate six workload dimensions which
include mental effort, physical demand, time
pressure, perceived effort, and frustration [17]. These
dimensions are ranked on a scale from 0 (very low)
to 100 (very high). After completing the specified
task, the individual provides a score for each domain,
which is then combined to calculate an overall
workload index [2]. Higher total scores, approaching
100, indicate greater perceived mental workload [1].

Bedford scale: The Bedford Workload Scale is
a 10-point tool mental workload rating system
constructed for assessing the cognitive demands
placed on military and commercial pilots during
and following high-intensity flight tasks [25]. A
score of 1 reflects minimal workload, while a score
of 10 signifies cognitive overload that interferes with
task completion. Due to its simplistic design, the
Bedford Scale is particularly useful in high-speed,
performance-critical environments like aviation,
where rapid assessment is critical [25].

Physical Activity Affect Scale (PAAS): PAAS is
employed to examine emotional reactions to physical
exertion, allowing researchers and practitioners to
understand how physical fatigue influences mood
and cognitive functioning [1]. The scale evaluates
dimensions such as energy, fatigue, tension, and
relaxation. These measures are relevant for physically
demanding occupations, such as emergency
responders, factory or assembly line workers, and
healthcare providers, where emotional state can
influence cognitive performance [1].

Instantaneous Self-Assessment (ISA): Originally
developed for use in aviation, The ISA provides RT
self-reports of perceived cognitive load during active
task performance [1]. The ISA allows individuals to
rate their mental effort, stress, and task demand as
they occur, providing a fast and noninvasive way to
examine mental strain without interfering with task
execution [1].

Cognitive Load Component Questionnaire (CLC):
The CLC breaks down MWL into three core domains:
(1) mental effort, (2) task complexity, and (3) time-
related pressure [26]. By isolating these elements, the
questionnaire helps identify which factors contribute
most to perceived mental workload during actual task
execution, providing a more detailed understanding
of task-related cognitive strain [26].
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Task completion time: Measuring the duration of
completing a task provides insight into how cognitive
workload influences efficiency. When workload levels
are elevated, individuals often take longer to complete
tasks, suggesting reduced focus, increased effort,
or mental fatigue. An increased workload typically
slows down performance, reflecting cognitive strain
or divided attention [1,3]. This measure is useful for
assessing adaptability and performance in varying
occupational roles.

Error rate and accuracy: Both error rate and
accuracy measure the quality and precision of task
execution. Higher cognitive workload often leads to
an increase in errors and a decrease in accuracy [1].
Monitoring these indicators can reveal how cognitive
demands influence attention, decision-making, and
the ability to perform with consistency, especially
in environments where task detail and precision are
critical [5,10].

Reaction time: Reaction time measures the speed
that an individual can respond to a given stimulus,
such as a visual or auditory signal. Under high
cognitive load, response times routinely slow down
due to overloaded mental processing. This metric is
important for professions that require immediate
and accurate execution, such as emergency medical
services, transport, and military operations [1,5].

Multisource data integration methods

Multimodal Assessment Methods (MAMSs) are
valuable for gaining in-depth insights into an
individual’s cognitive processes, task performance,
and emotional responses during work-related
activities [1]. As depicted in figure 2, to understand
MWL, these methods integrate multiple data
variables, including physiological signals, self-
reported ratings, and task outcomes to deliver more
accurate and meaningful insights [9,27]. Data-fusion
strategies using multimodal inputs are beneficial
in high-pressure occupations, such as military
operations, clinical care, industrial systems and
emergency services, where maintaining performance
and minimizing task errors is paramount [9]. Hence,
combining diverse assessment metrics can enhance
both reliability and precision, offering a more holistic
representation of an individual’s cognitive load on
the job.

Artificial intelligence and machine learning
methods

Data fusion approaches allow for the incorporation
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of ML techniques and AI, improving the ability to
predict signs of mental strain and initiate proactive
responses to other health-related issues, making
them valuable for tracking employees in high-
stress or safety-critical roles [20,28]. The fusion
of multimodal methods used to integrate these
data, such as ML and AlI, can rapidly detect when an
individual’s performance falls significantly, such
as 20 percent or more below their standard baseline
under normal cognitive conditions, allowing for
prompt identification and targeted action to mitigate
mistakes, maintain output, and protect workers’
well-being.

The use of data fusion techniques with ML
and Al presents specific challenges that deserve
consideration. Hence, to overcome potential
misleading data output, it is important (1) to maintain
data integrity and continually update data across
different locations and devices (e.g., synchronization
of data), (2) to ensure sensors are precisely calibrated
and adjusted, (3) to understand that workers
performing the same occupational task can exhibit
varying brain activities and stress response patterns
[5,9], (4) to recognize how AI and ML models may
yield false alarms, suffer from algorithmic bias, and
require large, high-quality datasets that accurately
reflect the target cohort [29,30]. The future predictive
capabilities of AI and ML techniques may become
more relevant in applied workplace environments
for RT monitoring of cognitive stress, such as the
following human-robot interaction case study.

Human-robot case study: tracking cognitive
overload

This case study illustrates the cognitive demands
placed on a human operator working alongside a
robotic arm, known as a cobot, within a smart factory
setting. It outlines recommended training techniques
for measuring human cognitive stress in RT using
objective data [6]. In an industrial smart factory
case study, a human operator is coordinated with a
cobot to complete time-sensitive classification and
sorting tasks. Although initially appearing efficient,
the system did not account for the operator’s mental
and physical condition, as the cobot functioned at
a constant speed [6]. To evaluate RT mental load,
the research team employed EEG and Functional
Near-Infrared Spectroscopy (FNIRS) technologies,
alongside the inclusion of a foot pedal, to measure
reaction time to audio stimuli [6]. The dual-task
design was intended to simulate real-world factory
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conditions. For the primary task, the cobot handed
the human operator color-coded boxes, and he had
to quickly decide whether the printed equation on
the box was correct. The operator then had to sort
the boxes based on either the printed text color or the
color label displayed [6]. For the secondary task, he
had to press a foot pedal below his factory workstation
as quickly as possible to track his divided attention
and stress level. If he fell behind by not matching
the speed of the cobot, the boxes were dropped. The
reaction time was measured over five episodes, each
lasting four minutes and the results of this study
showed peak cognitive overload during rapid task
sequences, suggesting the need for adaptive cobot
behavior based on RT human stress signals [6].

Wearable technologies can also be applied across
other high-stress fields, such as medicine, emergency
services, and biotech, to monitor cognitive workload
in RT. However, the sensor modalities used to
measure cognitive load should vary based on the type
of occupation. For instance, a surgeon engaged in
lengthy, intricate surgical procedures may be unable
to use EEG headgear during operations and require
less invasive biosensor technologies to measure his
cognitive load in this type of setting.

Adaptive scheduling, continuous RT

monitoring, and performance

Adaptive scheduling leverages RT biometric and
neuroergonomic data to predict and modify tasks
based on the user’s projected workload. Patterns
identified through collected data such as stress,
attention, cognitive load, and decision-making guide
the scheduling of demanding tasks and stressful work
conditions, allowing for planned recovery cycles to
reduce mental fatigue and cognitive strain [31].

Eliminating the need for intermediaries between
raw physiological data and processed insights
allows biometric sensors to operate more efficiently,
lowering costs, saving time, and potentially
saving lives. In physical and mentally demanding
occupations, continuously gathering RT data may
offer deeper insight into an individual’s current
performance level and help detect warning signals
of the early onset cognitive or physical fatigue [8].
Moreover, the integration of wearable biosensors
with enhanced employee onboarding practices has
led to improvements across various industries.
Virtual simulations can simplify complex or high-
risk training tasks into clear, manageable steps,
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helping workers build familiarity with new systems,
equipment, and workflows. This approach may
help employees become more productive while also
minimizing time and cost investments [32].

Ethics and data governance

Managing sensitive user data requires
acknowledging that health-related information
is inherently private and should be handled with
confidentiality [33]. A substantial number of users
may not fully understand the privacy concerns linked
to biometric wearable devices or the precise security
measures taken to protect their data [34,35]. For
instance, privacy policies displayed on wearable
devices are often difficult to navigate on small screens,
which can hinder user comprehension, potentially
resulting in misleading content, unauthorized data
usage or biased profiling based on misunderstood
agreements [34,36]. Furthermore, varying types of
occupational environments can pose challenges for
biometric signaling wearables owing to overheating,
water and/or sweat leakage, and a lack of sensor
connectivity in occupations such as construction,
healthcare, first responders, industrial tech factories,
and mining [37], or in extreme environments like
space, aviation, and deep-sea exploration.

The use of Al in handling sensitive personal data
raises important ethical concerns. Al integration
involves collecting data beyond basic biometric
measurements, including wuser behavior and
surveillance-related metrics. When Al-driven
biometric systems withhold worker data and use it
to expand managerial oversight, they risk causing
social and ethical harm [38]. Employees should have
the right to review and approve a predetermined
list of behaviors or activities that AI systems are
allowed to monitor to avoid invasion of user health
privacy. Future empirical research is necessary to
fully understand how AI monitoring may influence
decisions made by industry executive leaders and
employee beliefs. Establishing proactive policies
could reduce ambiguity relevant to how AI systems
are used and protect workers from misuse of personal
health information [38].

While biometric monitoring technologies offer
potentially relevant benefits, their widespread
integration into occupational settings is limited
by several practical challenges. These challenges
include but are not limited to the significant expense
associated with advanced biosensors, problems
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ensuring interoperability = between  different
platforms, and inconsistencies in sensor calibration
techniques across various user devices. Regulatory
requirements, such as those mandated by Health
Insurance Portability and Accountability Act (HIPAA)
for protection of sensitive health information, add
another layer of complexity, particularly when
sensitive health data is transmitted digitally.
Moreover, the lack of standardized data formats
and limited device compatibility across industries
present added challenges. More importantly, until
these challenges are systematically resolved, the
broad implementation of biometric systems to
capture multidimensional data will continue to face
significant limitations [33-35].

Future directions

Customizing cognitive workload thresholds using
individual baseline models may improve the accuracy
and precision of physiological monitoring, while
reducing errors often found in singular or standalone
biometric systems [39]. This may enhance user trust
in biometric outputs, even when occupational task
demands vary. Therefore, combining Al and ML may
help create work schedules that match an individual’s
cognitive resources at a specific period, leading to
improved task scheduling, lower cognitive strain,
enhanced worker safety, and more data-driven
decision-making for organizational leaders using RT
inputs [27].

To achieve a more holistic framework for
predicting mental and physical workloads, AI and
ML platforms should be considered by integrating
multiple data streams of occupation specific data,
which may enhance predictive accuracy and address
the shortcomings of single-source systems [27].
Lastly, individual and occupation role-based
differences suggest that variations in biometric
responses are natural and should be factored into
systems design [36].

Conclusion

This review explored the scientific, technological
and practical aspects of RT biometric monitoring
systems for detecting and managing cognitive
workload in complex, high-stress occupations. We
examined the theoretical foundations of cognitive
overload to understand how increased occupational
task demands can degrade cognitive processing. By
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integrating multidimensional measures, including
physiological, behavioral, and subjective data and
integrating Al and ML for multimodal data fusion,
these systems have the potential to enhance the
predictive accuracy of cognitive overload. This in
turn aids in the development of adaptive scheduling
for managing employee workload in high-demand
professions. While theseadvancementsare promising,
they also introduce ethical and data governance
challenges that must first be addressed through
longitudinal empirical validation and reliability
research applied in high-demand occupations before
large scale implementation. Future investigations
should focus on the variability of wearable sensors
used to collect RT physiological data in real-world,
high demand occupational settings, personalizing
cognitive workload thresholds for individuals, and
developing transparent governance and ethical
frameworks. These measures are paramount for
protecting personal health information data and
promoting sustained cognitive and physical health in
high-stress occupational ecosystems.
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