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REVIEW ARTICLE

Real-Time Biometric Monitoring for 
Cognitive Workload Detection in High 
Demand Professions: A Narrative Review
Reginald B O’Hara1,2*, Shelby C Loftis2 and Cynthia Rando2

1The University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968 USA
2Sophic Synergistics, LLC, Applied Health and Performance, 18050 Saturn Ln, Ste 280, Houston, TX 77058 USA

Abstract
Background: Wearable technology and multidimensional data analysis present 

signifi cant opportunities for the continuous, real-time monitoring of cognitive overload, 
potentially identifying early warning signals before performance degrades. However, 
key challenges exist, including ensuring data security, sensor accuracy, consistent 
calibration, accurate data processing, network limitations, and individual variability in 
responses. 

Objectives: (1) To explore the theoretical foundations of mental workload, (2) to 
investigate methods for integrating data from multiple sources, (3) to evaluate the role 
of Machine Learning (ML) and Artifi cial Intelligence (AI) in predicting early indicators of 
cognitive overload, (4) to examine ethical, privacy, and security concerns related to AI 
and ML applications, and (5) to propose directions for future empirical research on the 
validity and reliability of real-time biometric monitoring. 

Methods: Following the framework for Narrative Reviews (NRs) and the SANRA 
(Scale for the Assessment of NR articles) quality criteria, a comprehensive literature 
search was conducted across Google Scholar, PubMed Central, and electronic university 
databases from 1981 to 2025. Articles were selected based on relevance to the 
objectives and the primary aim using predefi ned search terms. 

Results: After 27 articles were excluded for not meeting established inclusion 
criteria, a total of 66 articles were assessed for eligibility. After the fi nal analysis, 39 full-
text articles were included. 

Conclusion: Integrating physiological and behavioral data with subjective 
assessments analyzed through AI and ML, may enable early detection of cognitive 
overload in high-stress environments. Such approaches could improve physical and 
cognitive performance, provide timely alerts for work-recovery cycles, and reduce 
task error rates. Presently, there is a lack of longitudinal studies addressing data 
standardization, sensor validation, and cybersecurity. Future empirical research is 
necessary to evaluate these technologies before their widespread use in critical sectors 
such as healthcare, public safety, air traffi  c control, and industry.
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Dermal Activity; EEG: Electroencephalogram; FNIRS: 
Functional Near-Infrared Spectroscopy; HRV: Heart 
Rate Variability; IT: Information Technology; ISA: 
Instantaneous Self-Assessment; MAM: Multimodal 
Assessment Methods; ML: Machine Learning; 
MRT: Multiple Resource Theory; MWL: Mental 
Workload; NASA: National Aeronautics And Space 
Administration; NR: Narrative Review; PAAS: Physical 
Activity Aff ect Scale; PNS: Parasympathetic Nervous 
System; RR: Respiratory Rate; RT: Real-Time; SNS: 
Sympathetic Nervous System; TL: Task Load Index.

Introduction
Mental Workload (MWL), often termed Cognitive 

Workload (CWL), refers to the cognitive eff ort 
required to eff ectively perform and complete a task 
at a specifi c moment [1]. CWL is infl uenced by task 
complexity, mental eff ort, and time pressure to 
meet task goals [1-3]. The brain functions much like 
a processing system. For example, when it receives 
an overload of information, particularly during 
multitasking, its effi  ciency declines, increasing the 
probability of mistakes and slower task performance. 

In recent years, employee health and stress 
have increased markedly, likely because of rapid 
technological growth and advancements in 
Information Technology (IT), such as Artifi cial 
Intelligence (AI), robotic process automation, 
remote work platforms, team collaboration tools, 
and workforce analytics, which continuously track 
employee performance [2]. Although these evolving 
technologies are helpful, they can also increase 
employees’ cognitive demands. For instance, the 
increase in clinical settings and the integration of 
IT, including electronic medical records, patient 
monitoring systems, and communication tools, is 
designed to improve the delivery of patient care. 
However, these systems require clinicians and nurses 
to divide their attention between multiple platforms 
and patient-care tasks, thereby encouraging 
multitasking. 

Frequent task-switching can overload mental 
resources, leading to increased error rates [4]. 
Multitasking increases the mental load by pushing the 
brain beyond its cognitive reserves, often resulting 
in task errors, safety risks, and cognitive processing 
delays, particularly in high-pressure environments 
where rapid and accurate performance is required. 
Overload likely occurs not because a person can truly 
focus on multiple tasks at once but because when 

individuals multitask, the brain is compelled to switch 
rapidly between tasks, which may exhaust mental 
resources, disrupt focus, and increase the chance of 
errors [1].

The emerging interest and increasing adoption 
of wearable biometric sensors play a critical role in 
enabling rapid collection, processing, and analysis 
of neurophysiological and behavioral pattern data in 
Real-Time (RT) contexts [1,2,4]. As mental workload 
increases, so does the risk of human error, especially 
in work settings that require sustained attention 
and rapid decision making under time constraints. 
To counteract these risks, non-invasive biometric 
monitoring systems off er a promising solution by 
enabling rapid responses and individualized targeted 
interventions. These systems assess the RT indicators 
of brain activity, heart rate, Heart Rate Variability 
(HRV), pupil dilation, and fi xation to detect early 
signs of overload [1,4-6]. By continuously monitoring 
these physiological signals, biometric sensors can 
help mitigate critical errors, improve employee 
safety and health, and sustain productivity, thereby 
enhancing performance metrics. 

Individuals in demanding roles can greatly 
benefi t from RT biometric monitoring systems, 
which help prevent injuries, sustain productivity, 
preserve health, and minimize errors. For instance, 
construction workers often experience signifi cant 
occupational fatigue because of the mental and 
physically demanding nature of their work, 
which often requires working in various types of 
environments (e.g., outside) [7]. Fatigue leads to 
a higher risk of errors and diminished awareness 
of potentially hazardous situations, resulting in 
potential catastrophic errors. In 2019, construction 
workers reported more than 200,000 cases of work-
related injuries and illnesses, highlighting the 
occupational risks present in this sector of industry, 
along with 79,700 missed workdays, all of which 
negatively aff ected productivity [7]. These fi ndings 
underscore the importance of addressing occupational 
fatigue not only in construction but also in other 
demanding occupations such as nursing, emergency 
responders (e.g., fi re, police), and specialized 
industrial technicians [7-9]. Integrating multimodal 
sensor datasets with fatigue measurement systems 
to capture RT biometric data can play a critical role in 
the early detection of mental fatigue [5,6]. However, 
in many high-pressure occupations, employees 
often lack access to RT monitoring systems that can 
detect mental overload before it leads to task errors, 
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declining mental health, or decreased performance 
[10]. Data relevant to mental and physical stress 
is typically gathered after stressful incidents have 
occurred rather than during RT work conditions [1].

This Narrative Review (NR) off ers a distinct 
contribution to the fi eld by exploring advancements 
in Artifi cial Intelligence (AI)-based prediction 
techniques that integrate multidimensional data to 
assess cognitive workload in real-time occupational 
environments. Prior reviews often only focus on use 
of single sensor systems or theoretical constructs. 
However, this review bridges physiological, 
behavioral, subjective, and performance measures 
for early detection of cognitive overload. Lastly, and 
perhaps most importantly, it emphasizes real-world 
application in high-stress occupational contexts, 
addressing implementation barriers, ethical issues, 
and potential pathways for future empirical validation.

The primary aim of this NR was to examine the 
scientifi c, technological, and feasibility of RT biometric 
monitoring systems for the early detection and 
management of MWL in high-demand occupations. 
The objectives of this review were: (1) to explore 
the theoretical foundations of MWL, (2) to evaluate 
various biometric modalities and performance 
indicators, (3) to examine the potential application 
of AI and Machine Learning (ML) to further enhance 
RT monitoring accuracy, (4) to understand ethical, 
security, and privacy challenges, and (5) based on the 
fi rst four objectives, we recommend future empirical 
research.

Methods
Inclusion criteria for selection of studies

Primary and secondary sources were eligible for 
inclusion and had to be written in English (Table 1). 
Peer-reviewed, open access articles were eligible for 
inclusion and had to address the NRs central aim and 
fi ve objectives. Articles that focused on the use of 
multimodal data, biosensor modalities for detecting 
cognitive overload, and the integration of biometric 
sensors for real-time monitoring of cognitive load 
were eligible for inclusion. Finally, articles that 
adequately described the scientifi c, technological, 
and feasibility of real-time biometrics monitoring 
for integration into high demand occupations were 
eligible for analysis.

Search strategy and screening

This Narrative Review (NR) was conducted 

according to the general framework of NRs outlined 
by Ferrari [11] alongside NR quality criteria developed 
by Baethge C, et al. [12]. 

Peer reviewed primary and secondary sources 
focused on cognitive workload, real-time biometric 
monitoring, and multi-modal data assessment 
methods that were identifi ed by searching Google 
Scholar, PubMed Central, and electronic university 
databases between 1981 and 2025. The key search 
terms for each database were “biometric sensors,” 
“cognitive overload,” “mental workload,” 
“multimodal data,” “occupational stress,” “artifi cial 
intelligence,” “predictive analytics,” and “electronic 
health records.” Finally, we reviewed additional 
relevant reference lists of the eligible full-text 
articles.

Source selection and data extraction

A primary literature search on Google Scholar 
using Boolean operators to separate the search terms 
“biometric sensors” OR “cognitive OR “mental” AND 
“multimodal data” AND “biometric sensors” from 
1981 to 2025, focusing on review articles, systematic 
reviews, observational studies, and government 
technical reports from full-text, open-access articles. 
We determined the key concepts for the review and 
navigated databases for proper keywords directly 
related to the topics of interest [11]. Zotero software 
was used to extract the results for the initial search 
strategy in the Google Scholar advanced search fi lter 
by entering the search terms “biometric sensors”, 
which yielded 10,200 results. The second search 
focused on “cognitive workload” AND “multimodal 
data,” generating 755 combined results. For the third 
search, we applied the key terms “mental workload” 

Table 1: Inclusion criteria.

1.     Original research articles

2.     Systematic reviews

3.     Defense technical reports

4.     Doctoral dissertations

5.     Full-text, open access peer reviewed articles
6.     Populations(s): high demand occupations, robotic tech and 
smart factory
7.     Context: use of multimodal data, use of biosensor modalities in 
workplace
8.     Integration of biometric sensors for real-time monitoring of 
mental workload
9.     Published between 1981-2025

10.   Written in the English language
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AND “occupational stress,” which produced 3,422 
results. A fourth Google Scholar advanced search 
highlighted the terms “artifi cial intelligence,” 
“predictive analytics,” AND “electronic health 
records,” yielding 16,800 articles.  

The same search strategy was performed in the 
electronic university library in the MINERQUEST 
search bar, choosing PubMed Central as the secondary 
database search, using the terms “biometric sensors” 
OR “cognitive workload” AND “multimodal data” for 
the period 1981–2025. The fi rst search yielded 9,230 
results with varying degrees of relevance to specifi c 
inclusion criteria. We applied fi lters for the second 
search using only the available online and peer-
reviewed data. We narrowed the resource type to 
only articles, review articles, reports, and fi rst online 
articles, which yielded 946 results. 

The 27 reports excluded lacked real-time biometric 
data relevance, focused primarily on theoretical 
models without applied sensor technologies, or did 
not provide open-access full texts. Further, studies 
not aligned with the fi ve primary objectives of this 
review or those with insuffi  cient methodological rigor 
were excluded. Two reviewers (RO, SL) independently 
reviewed titles and abstracts that were included in 
the initial database search against inclusion and 
exclusion criteria, then searched and selected full-
text articles meeting the inclusion criteria. Articles 
were then independently appraised by both authors 
(RO, SL). When there were disagreements on the 
overall appraisal process, both reviewers met to 
discuss the issue until they agreed. Both authors 
(RO, SL) developed a data extraction form, which 
was pilot tested prior to the database search and then 
revised after each reviewer appraised a minimum 
of three full-text articles. The fi nal list of research 
data characteristics extracted and examined from 
all articles included (1) author(s) and year, (2) article 
type, (3) primary aim, (4) method, and (5) key results.

Results
Figure 1 shows the NRs fl owchart for selecting 

sources. Articles were screened for eligibility, based 
on the established inclusion criteria. Thirty-nine 
articles were included for extensive review. Articles 
selected for inclusion consisted of the following: (1) 
primary research articles (n = 19), reviews (n = 12), 
systematic reviews (n = 5), defense technical reports 
(n = 2) and a doctoral thesis (n = 1).

Discussion
Theoretical foundations

The concept of mental (cognitive) workload is 
grounded in Wicken’s Multiple Resource Theory 
(MRT) and Sweller’s Cognitive Load Theory 
(CLT) [14,15]. MRT posits that the brain processes 
information through separate cognitive channels 
(e.g., visual, auditory), rather than relying on a single 
unifi ed cognitive resource. Tasks competing for 
the same channel can cause interference, partially 
explaining why multitasking sometimes succeeds but 
often impairs performance [14]. 

CLT builds on this by asserting that the brain can 
only process a limited amount of new information at 
once, particularly when the content is complex. CLT 
outlines three types of cognitive load: (1) intrinsic 
load, tied to the inherent complexity of the material, 
(2) extraneous load, caused by poorly designed 
instructions or interfaces, and (3) germane load, 
referring to the mental eff ort necessary to build 
understanding or form mental models [15].

Wickens further emphasized that diff erent tasks 
engage diff erent cognitive resources. For instance, 

Figure 1 Flow chart of literature selection [13].
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driving uses visual-spatial channels while conversing 
relies on auditory-verbal functions such as listening 
and speaking. While tasks that span multiple sensory 
systems can be manageable, success also depends 
on factors such as situational awareness and self-
regulation. Research shows that in-person passengers 
often adjust their conversation pace during complex 
driving conditions, helping reduce cognitive load [16]. 
In contrast, remote phone conversations lack visual 
cues, even when tasks are spread across diff erent 
cognitive channels [14,16,17].

To enhance employee performance, organizations 
applying CLT may consider schema-focused training 
that involves repeated exposure to practical, real-
world situations, allowing them to build automatic 
responses and reduce the intrinsic load during a 
real crisis [18]. Reducing extraneous load may be 
achieved by simplifying tools and interfaces, through 
intuitive dashboards or straightforward protocols 
that minimize the cognitive eff ort needed to 
interpret information under stressful conditions [17]. 
Additionally, large information inputs can decrease 
brain load when broken down into step-by-step fl ows 
and the use of external memory aids, such as visual 
cues, reminders, or auto-calculations [18].

Biometric sensor modalities and mental 
workload

This section outlines practical biometric sensor 

modalities and evaluation measures for continuously 
Monitoring Mental Workload (MWL) in Real-Time 
(RT) and real-world occupational settings. These 
measures, drawn from the scientifi c literature, 
are not exhaustive, as their applicability may vary 
based on task type, complexity, and demands. The 
goal is to systematically collect reliable data with 
minimal variation across days, weeks, or months. 
To be eff ective, the devices used must show both 
validity, measuring what they are intended to 
measure and reliability, producing consistent results 
over time. Since mental workload is a multifaceted 
construct that varies by occupation, it is important 
to consider the mental demands, stress levels, and 
task complexity specifi c to each occupational role. 
Improving predictive accuracy requires the collection 
and analysis of multidimensional data sources, 
including physiological metrics, task performance 
metrics, subjective reports, and task complexity. 
The evaluation measures presented in the following 
sections off er a comprehensive overview of these 
data sources, supporting their inclusion in future 
multimodal assessment studies.

Physiological and behavioral measures

Heart Rate Variability (HRV), 
Electroencephalography (EEG), and Electrodermal 
(EDA). HRV, a marker of autonomic nervous system 
regulation, refl ects how the body responds to both 

Figure 1 Multimodal measures, data, and reporting.
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physical and emotional stress and is widely used 
to assess workload fl uctuations [19,20]. While it 
off ers real-time insights, its interpretation can 
be infl uenced by factors such as sleep quality, 
cardiovascular fi tness, and emotional state. EEG 
and EDA are non-invasive physiological measures 
routinely used to examine cognitive workload 
and emotional stress. EEG records brain electrical 
activity through scalp-mounted electrodes. These 
signals capture fl uctuations in brain wave patterns 
associated with cognitive strain, emotional stress, 
and fatigue [1,21]. EEG enables continuous, objective 
monitoring of mental workload during tasks without 
interfering with performance, making it eff ective for 
tracking time-dependent changes in brain activity 
[21,22]. EDA measures changes in skin conductivity 
caused by sweat gland activity, which is regulated by 
the body’s stress-response system [1,5]. Increases in 
EDA signal heightened stress, emotional arousal, and 
mental workload. As a wearable and non-intrusive 
method, EDA eff ectively detects early signs of stress 
by capturing involuntary physiological responses in 
high-demand environments [5].

Respiratory Rate (RR): RR patterns depict how 
stress and cognitive load are related, as both the 
breathing rate and rhythm routinely shift in response 
to mental or emotional stress. Higher mental demands 
routinely cause breathing to become faster and more 
uniform, reducing the variability in respiratory 
patterns. Monitoring these changes in respiration 
provides a non-invasive method for tracking 
physiological indicators of stress and cognitive eff ort 
during task performance [2].

Eye tracking: Eye-tracking devices, which are 
minimally invasive, measure visual attention by 
monitoring measures such as blink frequency, gaze 
duration, pupil size, and fi xation periods [1]. With 
increased MWL, fi xation patterns may become 
more focused, and the blink rate decreases. These 
indicators can provide valuable data on attention, 
visual processing effi  ciency, and cognitive load 
during complex task execution or interaction with 
work interfaces [1].

Subjective and performance measures

NASA-TLX (Task Load Index).  The NASA TLX is a 
widely used multidimensional tool designed to assess 
perceived mental and physical workload during task 
performance, particularly in high-stakes ecosystems 
like aerospace, healthcare, fi rst response, and 
human-machine interaction settings [23,24]. It also 

has applications in general workplace assessments 
to pinpoint overly complex or demanding tasks. 
Participants rate six workload dimensions which 
include mental eff ort, physical demand, time 
pressure, perceived eff ort, and frustration [17].  These 
dimensions are ranked on a scale from 0 (very low) 
to 100 (very high). After completing the specifi ed 
task, the individual provides a score for each domain, 
which is then combined to calculate an overall 
workload index [2]. Higher total scores, approaching 
100, indicate greater perceived mental workload [1]. 

Bedford scale: The Bedford Workload Scale is 
a 10-point tool mental workload rating system 
constructed for assessing the cognitive demands 
placed on military and commercial pilots during 
and following high-intensity fl ight tasks [25]. A 
score of 1 refl ects minimal workload, while a score 
of 10 signifi es cognitive overload that interferes with 
task completion. Due to its simplistic design, the 
Bedford Scale is particularly useful in high-speed, 
performance-critical environments like aviation, 
where rapid assessment is critical [25].

Physical Activity Aff ect Scale (PAAS):  PAAS is 
employed to examine emotional reactions to physical 
exertion, allowing researchers and practitioners to 
understand how physical fatigue infl uences mood 
and cognitive functioning [1]. The scale evaluates 
dimensions such as energy, fatigue, tension, and 
relaxation. These measures are relevant for physically 
demanding occupations, such as emergency 
responders, factory or assembly line workers, and 
healthcare providers, where emotional state can 
infl uence cognitive performance [1].

Instantaneous Self-Assessment (ISA):  Originally 
developed for use in aviation, The ISA provides RT 
self-reports of perceived cognitive load during active 
task performance [1]. The ISA allows individuals to 
rate their mental eff ort, stress, and task demand as 
they occur, providing a fast and noninvasive way to 
examine mental strain without interfering with task 
execution [1].

Cognitive Load Component Questionnaire (CLC):  
The CLC breaks down MWL into three core domains: 
(1) mental eff ort, (2) task complexity, and (3) time-
related pressure [26]. By isolating these elements, the 
questionnaire helps identify which factors contribute 
most to perceived mental workload during actual task 
execution, providing a more detailed understanding 
of task-related cognitive strain [26].
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Task completion time:  Measuring the duration of 
completing a task provides insight into how cognitive 
workload infl uences effi  ciency. When workload levels 
are elevated, individuals often take longer to complete 
tasks, suggesting reduced focus, increased eff ort, 
or mental fatigue. An increased workload typically 
slows down performance, refl ecting cognitive strain 
or divided attention [1,3]. This measure is useful for 
assessing adaptability and performance in varying 
occupational roles.

Error rate and accuracy: Both error rate and 
accuracy measure the quality and precision of task 
execution. Higher cognitive workload often leads to 
an increase in errors and a decrease in accuracy [1]. 
Monitoring these indicators can reveal how cognitive 
demands infl uence attention, decision-making, and 
the ability to perform with consistency, especially 
in environments where task detail and precision are 
critical [5,10].

Reaction time: Reaction time measures the speed 
that an individual can respond to a given stimulus, 
such as a visual or auditory signal. Under high 
cognitive load, response times routinely slow down 
due to overloaded mental processing. This metric is 
important for professions that require immediate 
and accurate execution, such as emergency medical 
services, transport, and military operations [1,5].

Multisource data integration methods

Multimodal Assessment Methods (MAMs) are 
valuable for gaining in-depth insights into an 
individual’s cognitive processes, task performance, 
and emotional responses during work-related 
activities [1]. As depicted in fi gure 2, to understand 
MWL, these methods integrate multiple data 
variables, including physiological signals, self-
reported ratings, and task outcomes to deliver more 
accurate and meaningful insights [9,27]. Data-fusion 
strategies using multimodal inputs are benefi cial 
in high-pressure occupations, such as military 
operations, clinical care, industrial systems and 
emergency services, where maintaining performance 
and minimizing task errors is paramount [9]. Hence, 
combining diverse assessment metrics can enhance 
both reliability and precision, off ering a more holistic 
representation of an individual’s cognitive load on 
the job. 

Artifi cial intelligence and machine learning 
methods

Data fusion approaches allow for the incorporation 

of ML techniques and AI, improving the ability to 
predict signs of mental strain and initiate proactive 
responses to other health-related issues, making 
them valuable for tracking employees in high-
stress or safety-critical roles [20,28]. The fusion 
of multimodal methods used to integrate these 
data, such as ML and AI, can rapidly detect when an 
individual’s performance falls signifi cantly, such 
as 20 percent or more below their standard baseline 
under normal cognitive conditions, allowing for 
prompt identifi cation and targeted action to mitigate 
mistakes, maintain output, and protect workers’ 
well-being.

The use of data fusion techniques with ML 
and AI presents specifi c challenges that deserve 
consideration. Hence, to overcome potential 
misleading data output, it is important  (1) to maintain 
data integrity and continually update data across 
diff erent locations and devices (e.g., synchronization 
of data), (2) to ensure sensors are precisely calibrated 
and adjusted, (3) to understand that workers 
performing the same occupational task can exhibit 
varying brain activities and stress response patterns 
[5,9], (4) to recognize how AI and ML models may 
yield false alarms, suff er from algorithmic bias, and 
require large, high-quality datasets that accurately 
refl ect the target cohort [29,30]. The future predictive 
capabilities of AI and ML techniques may become 
more relevant in applied workplace environments 
for RT monitoring of cognitive stress, such as the 
following human-robot interaction case study.

Human-robot case study: tracking cognitive 
overload 

This case study illustrates the cognitive demands 
placed on a human operator working alongside a 
robotic arm, known as a cobot, within a smart factory 
setting. It outlines recommended training techniques 
for measuring human cognitive stress in RT using 
objective data [6]. In an industrial smart factory 
case study, a human operator is coordinated with a 
cobot to complete time-sensitive classifi cation and 
sorting tasks. Although initially appearing effi  cient, 
the system did not account for the operator’s mental 
and physical condition, as the cobot functioned at 
a constant speed [6]. To evaluate RT mental load, 
the research team employed EEG and Functional 
Near-Infrared Spectroscopy (FNIRS) technologies, 
alongside the inclusion of a foot pedal, to measure 
reaction time to audio stimuli [6]. The dual-task 
design was intended to simulate real-world factory 
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conditions. For the primary task, the cobot handed 
the human operator color-coded boxes, and he had 
to quickly decide whether the printed equation on 
the box was correct. The operator then had to sort 
the boxes based on either the printed text color or the 
color label displayed [6]. For the secondary task, he 
had to press a foot pedal below his factory workstation 
as quickly as possible to track his divided attention 
and stress level. If he fell behind by not matching 
the speed of the cobot, the boxes were dropped. The 
reaction time was measured over fi ve episodes, each 
lasting four minutes and the results of this study 
showed peak cognitive overload during rapid task 
sequences, suggesting the need for adaptive cobot 
behavior based on RT human stress signals [6].

Wearable technologies can also be applied across 
other high-stress fi elds, such as medicine, emergency 
services, and biotech, to monitor cognitive workload 
in RT. However, the sensor modalities used to 
measure cognitive load should vary based on the type 
of occupation. For instance, a surgeon engaged in 
lengthy, intricate surgical procedures may be unable 
to use EEG headgear during operations and require 
less invasive biosensor technologies to measure his 
cognitive load in this type of setting.

Adaptive scheduling, continuous RT 
monitoring, and performance

Adaptive scheduling leverages RT biometric and 
neuroergonomic data to predict and modify tasks 
based on the user’s projected workload. Patterns 
identifi ed through collected data such as stress, 
attention, cognitive load, and decision-making guide 
the scheduling of demanding tasks and stressful work 
conditions, allowing for planned recovery cycles to 
reduce mental fatigue and cognitive strain [31]. 

Eliminating the need for intermediaries between 
raw physiological data and processed insights 
allows biometric sensors to operate more effi  ciently, 
lowering costs, saving time, and potentially 
saving lives. In physical and mentally demanding 
occupations, continuously gathering RT data may 
off er deeper insight into an individual’s current 
performance level and help detect warning signals 
of the early onset cognitive or physical fatigue [8]. 
Moreover, the integration of wearable biosensors 
with enhanced employee onboarding practices has 
led to improvements across various industries. 
Virtual simulations can simplify complex or high-
risk training tasks into clear, manageable steps, 

helping workers build familiarity with new systems, 
equipment, and workfl ows. This approach may 
help employees become more productive while also 
minimizing time and cost investments [32].

Ethics and data governance

Managing sensitive user data requires 
acknowledging that health-related information 
is inherently private and should be handled with 
confi dentiality [33]. A substantial number of users 
may not fully understand the privacy concerns linked 
to biometric wearable devices or the precise security 
measures taken to protect their data [34,35]. For 
instance, privacy policies displayed on wearable 
devices are often diffi  cult to navigate on small screens, 
which can hinder user comprehension, potentially 
resulting in misleading content, unauthorized data 
usage or biased profi ling based on misunderstood 
agreements [34,36]. Furthermore, varying types of 
occupational environments can pose challenges for 
biometric signaling wearables owing to overheating, 
water and/or sweat leakage, and a lack of sensor 
connectivity in occupations such as construction, 
healthcare, fi rst responders, industrial tech factories, 
and mining [37], or in extreme environments like 
space, aviation, and deep-sea exploration.

The use of AI in handling sensitive personal data 
raises important ethical concerns. AI integration 
involves collecting data beyond basic biometric 
measurements, including user behavior and 
surveillance-related metrics. When AI-driven 
biometric systems withhold worker data and use it 
to expand managerial oversight, they risk causing 
social and ethical harm [38]. Employees should have 
the right to review and approve a predetermined 
list of behaviors or activities that AI systems are 
allowed to monitor to avoid invasion of user health 
privacy. Future empirical research is necessary to 
fully understand how AI monitoring may infl uence 
decisions made by industry executive leaders and 
employee beliefs. Establishing proactive policies 
could reduce ambiguity relevant to how AI systems 
are used and protect workers from misuse of personal 
health information [38]. 

While biometric monitoring technologies off er 
potentially relevant benefi ts, their widespread 
integration into occupational settings is limited 
by several practical challenges. These challenges 
include but are not limited to the signifi cant expense 
associated with advanced biosensors, problems 
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ensuring interoperability between diff erent 
platforms, and inconsistencies in sensor calibration 
techniques across various user devices. Regulatory 
requirements, such as those mandated by Health 
Insurance Portability and Accountability Act (HIPAA) 
for protection of sensitive health information, add 
another layer of complexity, particularly when 
sensitive health data is transmitted digitally. 
Moreover, the lack of standardized data formats 
and limited device compatibility across industries 
present added challenges. More importantly, until 
these challenges are systematically resolved, the 
broad implementation of biometric systems to 
capture multidimensional data will continue to face 
signifi cant limitations [33-35].

Future directions

Customizing cognitive workload thresholds using 
individual baseline models may improve the accuracy 
and precision of physiological monitoring, while 
reducing errors often found in singular or standalone 
biometric systems [39]. This may enhance user trust 
in biometric outputs, even when occupational task 
demands vary. Therefore, combining AI and ML may 
help create work schedules that match an individual’s 
cognitive resources at a specifi c period, leading to 
improved task scheduling, lower cognitive strain, 
enhanced worker safety, and more data-driven 
decision-making for organizational leaders using RT 
inputs [27]. 

To achieve a more holistic framework for 
predicting mental and physical workloads, AI and 
ML platforms should be considered by integrating 
multiple data streams of occupation specifi c data, 
which may enhance predictive accuracy and address 
the shortcomings of single-source systems [27]. 
Lastly, individual and occupation role-based 
diff erences suggest that variations in biometric 
responses are natural and should be factored into 
systems design [36].

Conclusion
This review explored the scientifi c, technological 

and practical aspects of RT biometric monitoring 
systems for detecting and managing cognitive 
workload in complex, high-stress occupations. We 
examined the theoretical foundations of cognitive 
overload to understand how increased occupational 
task demands can degrade cognitive processing. By 

integrating multidimensional measures, including 
physiological, behavioral, and subjective data and 
integrating AI and ML for multimodal data fusion, 
these systems have the potential to enhance the 
predictive accuracy of cognitive overload. This in 
turn aids in the development of adaptive scheduling 
for managing employee workload in high-demand 
professions. While these advancements are promising, 
they also introduce ethical and data governance 
challenges that must fi rst be addressed through 
longitudinal empirical validation and reliability 
research applied in high-demand occupations before 
large scale implementation. Future investigations 
should focus on the variability of wearable sensors 
used to collect RT physiological data in real-world, 
high demand occupational settings, personalizing 
cognitive workload thresholds for individuals, and 
developing transparent governance and ethical 
frameworks. These measures are paramount for 
protecting personal health information data and 
promoting sustained cognitive and physical health in 
high-stress occupational ecosystems.
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