Covid-19 Research

Original Article

OCLC Number/Unique Identifier: 8979505266

Potential Use of Quercetin as Protective Agent against Hydroxychloroquine Induced Cardiotoxicity

Medicine Group    Start Submission

Mona G Amer* and Nader M. Mohamed

Volume2-Issue3
Dates: Received: 2021-03-07 | Accepted: 2021-03-17 | Published: 2021-03-18
Pages: 185-192

Abstract

The aim of this study is to investigate the protective effects of Quercetin (QCT) on Hydroxychloquine (HCQ)-induced myocardial affection in rats. HCQ has been found to produce toxic effects including cardiac manifestation. Adding QCT to HCQ ameliorates its effects and prevents cardiac manifestations. For this purpose, eighty adult male rats were divided into four groups (n = 20). Group 1 (control) and group 2 (QCT-treated). Group 3 (HCQ treated) received 20 mg/kg of HCQ and group 4 (QCT + HCQ treated) received quercetin (50 mg/kg; orally) combined with HCQ for 4 weeks. Cardiac troponin-I and oxidative markers (Malondialdehyde (MDA), and total serum antioxidant) were estimated in serum. In addition, histopathological and morphometric changes of the rat heart were assessed. The HCQ treated group showed increased serum levels of cardiac troponin-I, MDA and decreased serum levels of total antioxidant. Pathological picture of myocardial hypertrophy and degeneration together with depleted cardiac tissue expression of troponin T were also observed. The characteristic features were presence of whorled myelin bodies and curvilinear bodies by EM examination. These parameters improved better in the group receiving combination of QCT together with HCQ. So, Adding QCT to HCQ could be prophylactic measure against its cardiotoxic effect compared with HCQ treatment alone.

FullText HTML FullText PDF DOI: 10.37871/jbres1208


Certificate of Publication




Copyright

© 2021 Amer MG, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Amer MG, Mohamed NM. Potential Use of Quercetin as Protective Agent against Hydroxychloroquine Induced Cardiotoxicity. J Biomed Res Environ Sci. 2021 Mar 18; 2(3): 185-192. doi: 10.37871/jbres1208, Article ID: jbres1208


Subject area(s)

References


  1. Teixeira RA, Martinelli Filho M, Benvenuti LA, Costa R, Pedrosa AA, Nishióka SA. Cardiac damage from chronic use of chloroquine: A case report and review of the literature. Arq Bras Cardiol. 2002 Jul;79(1):85-88. doi: 10.1590/s0066-782x2002001000009. PMID: 12163948.s
  2. Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res. 2020 Aug;158:104904. doi: 10.1016/j.phrs.2020.104904. Epub 2020 May 13. PMID: 32430286; PMCID: PMC7217799.s
  3. Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D, Qian Z, Li T, Shen Y, Lu H. [A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25;49(2):215-219. Chinese. doi: 10.3785/j.issn.1008-9292.2020.03.03. PMID: 32391667s.
  4. Meo SA, Klonoff DC, Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci. 2020 Apr;24(8):4539-4547. doi: 10.26355/eurrev_202004_21038. PMID: 32373993s.
  5. Yogasundaram H, Hung W, Paterson ID, Sergi C, Oudit GY. Chloroquine-induced cardiomyopathy: a reversible cause of heart failure. ESC Heart Fail. 2018 Jun;5(3):372-375. doi: 10.1002/ehf2.12276. Epub 2018 Feb 20. PMID: 29460476; PMCID: PMC5933951s.
  6. Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev. 2014 Jul;8(16):122-46. doi: 10.4103/0973-7847.134247. PMID: 25125885; PMCID: PMC4127821.
  7. Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007 Nov;45(11):2179-205. doi: 10.1016/j.fct.2007.05.015. Epub 2007 Jun 7. PMID: 17698276s.
  8. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008 May 13;585(2-3):325-37. doi: 10.1016/j.ejphar.2008.03.008. Epub 2008 Mar 18. PMID: 18417116s.
  9. Kumar Mishra S, Singh P, Rath SK. Protective effect of quercetin on chloroquine-induced oxidative stress and hepatotoxicity in mice. Malar Res Treat. 2013;2013:141734. doi: 10.1155/2013/141734. Epub 2013 Mar 27. PMID: 23607047; PMCID: PMC3625570s.
  10. Ferenczyova K, Kalocayova B, Bartekova M. Potential Implications of Quercetin and its Derivatives in Cardioprotection. Int J Mol Sci. 2020 Feb 26;21(5):1585. doi: 10.3390/ijms21051585. PMID: 32111033; PMCID: PMC7084176s.
  11. Guide for the Care and Use of Laboratory Animals Institute of Laboratory Animal Resources Commission on Life Sciences. Washington DC. National Research Council National Academy Press. 1996.
  12. Izunya AM, Nwaopara AO, Anyanwu LC, Odike MAC, Oaikhena GA, Bankole JK, Okhiai O. Effect of chronic oral administration of chloroquine on the histology of the heart in Wistar rats. Biology and Medicine. 2011 July 01;3 (4):p.1-6.
  13. Zaafan MA, Zaki HF, El-Brairy AI, Kenawy SA. Protective effects of atorvastatin and quercetin on isoprenaline-induced myocardial infarction in rats. Bull Fac Pharm. 2013 June; 51(1):35–41. doi:10.1016/j.bfopcu.2013.03.001.
  14. Morand C, Manach C, Crespy V, Remesy C. Quercetin 3-O-beta-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radic Res. 2000 Nov;33(5):667-76. doi: 10.1080/10715760000301181. PMID: 11200097.
  15. Willhite CC. Teratogenic potential of quercetin in the rat. Food Chem Toxicol. 1982 Feb;20(1):75-9. doi: 10.1016/s0278-6915(82)80012-4. PMID: 7200058.
  16. Kubota Y, Umegaki K, Kagota S, Tanaka N, Nakamura K, Kunitomo M, Shinozuka K. Evaluation of blood pressure measured by tail-cuff methods (without heating) in spontaneously hypertensive rats. Biol Pharm Bull. 2006 Aug;29(8):1756-8. doi: 10.1248/bpb.29.1756. PMID: 16880638.
  17. Pauline M, Sandhya TA and Maruthy KN. Non Invasive Measurement of Systolic Blood Pressure in Rats: A Simple Technique. Al Ameen J Med Sci. 2011;4(4):365-369.
  18. Thapar MK, Johnson WW, Sanyal SK. Perfusion-fixation of the heart and its conduction system for ultrastructural studies. Eur J Cardiol. 1980 Feb;11(2):91-104. PMID: 7363928.
  19. Nasser Hajibagheri MA. Fixatives and fixation. In: Electron microscopy methods and protocols. London, UK: Humana Press Inc;1999. 1st ed. pp 3-7.
  20. Bancroft JD, Gamble M. Theory and practice of histological techniques. Churchill Livingstone, USA: 2002. 5th ed.
  21. Kiernan JA. Histological and histochemical methods : theory and practice. Oxford, UK: Butterworth-Heinemann; 1999. 3rd ed.
  22. Harada K, Komuro I, Shiojima I, Hayashi D, Kudoh S, Mizuno T, Kijima K, Matsubara H, Sugaya T, Murakami K, Yazaki Y. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation. 1998 May 19;97(19):1952-9. doi: 10.1161/01.cir.97.19.1952. PMID: 9609089.
  23. Joyce E, Fabre A, Mahon N. Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: key diagnostic features and literature review. Eur Heart J Acute Cardiovasc Care. 2013 Mar;2(1):77-83. doi: 10.1177/2048872612471215. PMID: 24062937; PMCID: PMC3760572.
  24. Chang A, Stolin G, Fan J, Larreta BR, Fishbein GA, Wallace WD, Baas AS, Cruz D, Wang J. Hypertrophic cardiomyopathy in a lupus patient: a case of hydroxychloroquine cardiotoxicity. ESC Heart Fail. 2019 Dec;6(6):1326-1330. doi: 10.1002/ehf2.12508. Epub 2019 Sep 7. PMID: 31493341; PMCID: PMC6989295.
  25. Yogasundaram H, Putko BN, Tien J, Paterson DI, Cujec B, Ringrose J, Oudit GY. Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment. Can J Cardiol. 2014 Dec;30(12):1706-15. doi: 10.1016/j.cjca.2014.08.016. Epub 2014 Aug 23. PMID: 25475472.
  26. Joyce E, Fabre A, Mahon N. Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: key diagnostic features and literature review. Eur Heart J Acute Cardiovasc Care. 2013 Mar;2(1):77-83. doi: 10.1177/2048872612471215. PMID: 24062937; PMCID: PMC3760572.
  27. Baguet JP, Tremel F, Fabre M. Chloroquine cardiomyopathy with conduction disorders. Heart. 1999 Feb;81(2):221-3. doi: 10.1136/hrt.81.2.221. PMID: 9922366; PMCID: PMC1728937.
  28. Khoo T, Otto S, Koszyka B, Smith C, Blumbergs P, Lester S, Limaye V. The Clinical Significance of Curvilinear Bodies on Ultrastructural Examination of Muscle [abstract]. Arthritis Rheumatol. 2016 Sep 28;68 (suppl 10).
  29. Veinot JP, Mai KT, Zarychanski R. Chloroquine related cardiac toxicity. J Rheumatol. 1998 Jun;25(6):1221-5. PMID: 9632091.
  30. Verny C, de Gennes C, Sébastien P, Lê Thi HD, Chapelon C, Piette JC, Chomette G, Godeau P. Troubles de la conduction cardiaque au cours d’un traitement prolongé par chloroquine. Deux nouvelles observations [Heart conduction disorders in long-term treatment with chloroquine. Two new cases]. Presse Med. 1992 May 2-9;21(17):800-4. French. PMID: 1535141.
  31. Blignaut M, Espach Y, van Vuuren M, Dhanabalan K, Huisamen B. Revisiting the Cardiotoxic Effect of Chloroquine. Cardiovasc Drugs Ther. 2019 Feb;33(1):1-11. doi: 10.1007/s10557-018-06847-9. PMID: 30635818.
  32. Barennes H, Balima-Koussoubé T, Nagot N, Charpentier JC, Pussard E. Safety and efficacy of rectal compared with intramuscular quinine for the early treatment of moderately severe malaria in children: randomised clinical trial. BMJ. 2006 May 6;332(7549):1055-9. doi: 10.1136/bmj.332.7549.1055. PMID: 16675812; PMCID: PMC1458599.
  33. Beri R, Chandra R. Chemistry and biology of heme. Effect of metal salts, organometals, and metalloporphyrins on heme synthesis and catabolism, with special reference to clinical implications and interactions with cytochrome P-450. Drug Metab Rev. 1993;25(1-2):49-152. doi: 10.3109/03602539308993973. PMID: 8449148.
  34. Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev. 2003 Sep;55(3):551-71. doi: 10.1124/pr.55.3.5. Epub 2003 Jul 17. PMID: 12869663.
  35. Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005 Jul 4;157(3):175-88. doi: 10.1016/j.toxlet.2005.03.004. Epub 2005 Apr 7. PMID: 15917143.
  36. Page RL, O’Bryant CL, Cheng D, Dow TJ, Ky B, Stein CM, Spencer AP, Trupp RJ, Lindenfeld J. Drugs that may cause or exacerbate heart failure. Circulation. 2016 Jul 11;134:e32-e69. doi:10.1161/CIR.0000000000000426.
  37. Di Girolamo F, Claver E, Olivé M, Salazar-Mendiguchía J, Manito N, Cequier Á. Dilated Cardiomyopathy and Hydroxychloroquine-induced Phospholipidosis: From Curvilinear Bodies to Clinical Suspicion. Rev Esp Cardiol (Engl Ed). 2018 Jun;71(6):491-493. English, Spanish. doi: 10.1016/j.rec.2017.04.017. Epub 2017 May 18. PMID: 28528883.
  38. Roos JM, Aubry MC, Edwards WD. Chloroquine cardiotoxicity: clinicopathologic features in three patients and comparison with three patients with Fabry disease. Cardiovasc Pathol. 2002 Sep-Oct;11(5):277-83. doi: 10.1016/s1054-8807(02)00118-7. PMID: 12361838.
  39. Tönnesmann E, Kandolf R, Lewalter T. Chloroquine cardiomyopathy - a review of the literature. Immunopharmacol Immunotoxicol. 2013 Jun;35(3):434-42. doi: 10.3109/08923973.2013.780078. Epub 2013 May 1. PMID: 23635029.
  40. August C, Holzhausen HJ, Schmoldt A, Pompecki R, Schröder S. Histological and ultrastructural findings in chloroquine-induced cardiomyopathy. J Mol Med (Berl). 1995 Feb;73(2):73-7. doi: 10.1007/BF00270580. PMID: 7627632.
  41. Frustaci A, Morgante E, Antuzzi D, Russo MA, Chimenti C. Inhibition of cardiomyocyte lysosomal activity in hydroxychloroquine cardiomyopathy. Int J Cardiol. 2012 May 17;157(1):117-9. doi: 10.1016/j.ijcard.2012.03.112. Epub 2012 Apr 4. PMID: 22481048.
  42. Tunca R, Sozmen M, Erdogan H, Citil M, Uzlu E, Ozen H, Gokçe E. Determination of cardiac troponin I in the blood and heart of calves with foot-and-mouth disease. J Vet Diagn Invest. 2008 Sep;20(5):598-605. doi: 10.1177/104063870802000510. PMID: 18776092.
  43. Tripathi A, Kumar B, Sagi SSK. Prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. PLoS One. 2019 Jun 28;14(6):e0219075. doi: 10.1371/journal.pone.0219075. PMID: 31251771; PMCID: PMC6599121.
  44. Panda S, Kar A, Banerjee T, Sharma N. Combined effects of quercetin and atenolol in reducing isoproterenol-induced cardiotoxicity in rats: possible mediation through scavenging free radicals. Cardiovasc Toxicol. 2012 Sep;12(3):235-42. doi: 10.1007/s12012-012-9161-3. PMID: 22391854.
  45. Liu H, Zhang L, Lu S. Evaluation of antioxidant and immunity activities of quercetin in isoproterenol-treated rats. Molecules. 2012 Apr 10;17(4):4281-91. doi: 10.3390/molecules17044281. PMID: 22491677; PMCID: PMC6268199s.
  46. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr. 2005 Oct;135(10):2299-304. doi: 10.1093/jn/135.10.2299. PMID: 16177186.
  47. González-Gallego J, Sánchez-Campos S, Tuñón MJ. Anti-inflammatory properties of dietary flavonoids. Nutr Hosp. 2007 May-Jun;22(3):287-93. PMID: 17612370.
  48. Brüll V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Müller C, Langguth P, Alteheld B, Fimmers R, Naaf S, Zimmermann BF, Stehle P, Egert S. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. Br J Nutr. 2015 Oct 28;114(8):1263-77. doi: 10.1017/S0007114515002950. Epub 2015 Sep 2. PMID: 26328470; PMCID: PMC4594049.
  49. Calabró V, Litterio MC, Fraga CG, Galleano M, Piotrkowski B. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats. Arch Biochem Biophys. 2018 Jun 1;647:47-53. doi: 10.1016/j.abb.2018.03.041. Epub 2018 Apr 3. PMID: 29621523.
  50. Kim SG, Kim JR, Choi HC. Quercetin-Induced AMP-Activated Protein Kinase Activation Attenuates Vasoconstriction Through LKB1-AMPK Signaling Pathway. J Med Food. 2018 Feb;21(2):146-153. doi: 10.1089/jmf.2017.4052. Epub 2017 Oct 16. PMID: 29035613.
  51. Pereira SC, Parente JM, Belo VA, Mendes AS, Gonzaga NA, do Vale GT, Ceron CS, Tanus-Santos JE, Tirapelli CR, Castro MM. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis. 2018 Mar;270:146-153. doi: 10.1016/j.atherosclerosis.2018.01.031. Epub 2018 Jan 31. PMID: 29425960.
  52. Barteková M, Šimončíková P, Fogarassyová M, Ivanová M, Okruhlicová Ľ, Tribulová N, Dovinová I, Barančík M. Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. Int J Mol Sci. 2015 Apr 13;16(4):8168-85. doi: 10.3390/ijms16048168. PMID: 25872140; PMCID: PMC4425074.
  53. Wang Y, Zhang ZZ, Wu Y, Ke JJ, He XH, Wang YL. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway. Braz J Med Biol Res. 2013 Oct;46(10):861-7. doi: 10.1590/1414-431X20133036. Epub 2013 Sep 24. PMID: 24068165; PMCID: PMC3854307.
  54. Liu H, Guo X, Chu Y, Lu S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene. 2014 Jul 15;545(1):149-55. doi: 10.1016/j.gene.2014.04.043. Epub 2014 Apr 24. PMID: 24769323.
  55. Castillo RL, Herrera EA, Gonzalez-Candia A, Reyes-Farias M, de la Jara N, Peña JP, Carrasco-Pozo C. Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. Oxid Med Cell Longev. 2018 Jan 11;2018:7239123. doi: 10.1155/2018/7239123. PMID: 29576853; PMCID: PMC5821945.
  56. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, Inflammation and Immunity. Nutrients. 2016 Mar 15;8(3):167. doi: 10.3390/nu8030167. PMID: 26999194; PMCID: PMC4808895.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search