Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9041188574

A Hundred-Year Researching History on the Low Ionic Strength in Red Blood Cells: Literature Review

Medicine Group    Start Submission

Fuhrmann GF* and Netter KJ

Volume2-Issue3
Dates: Received: 2021-03-01 | Accepted: 2021-03-10 | Published: 2021-03-11
Pages: 139-168

Abstract

This review article provides a critical survey of work from 1904 to 2003 on the effects of low ionic strength in Red Blood Cells (RBCs) incubated in media with impermeable sugars such as sucrose. In 1904 Gürber A washed RBCs of different species with isotonic sucrose solution to eliminate the outside ions in order to better analyse their intracellular ionic composition; however, this approach was not feasible because of a substantial salt efflux from the cells.

A prominent feature of the salt loss is the shrinking of the RBCs. A central role in the understanding of the ionic movements is thereby the new Donnan equilibrium of the anions. Experimental evidence has been given by Jacobs MH and Parpart AK in 1933. In the sucrose medium two phases could be predicted: 1) a very rapid anionic shift resulting in an unequal distribution of chloride and hydroxyl anions on both sides of the membrane and 2) a leakage of salts from the RBCs.

In 1940 Wilbrandt W assumed that a positive membrane potential is in line with the salt loss at low ionic strength in RBCs.

In 1977 Knauf PA, Fuhrmann GF, Rothstein S and Rothstein A observed in RBCs an inhibition of both, anion exchange and also of net anion efflux, by incubation with disulfonic stilbene derivates. At low ionic strength the Donnan equilibrium is immediately obtained by the Anion Exchanger Protein (AEP). The resulting positive membrane potential opens at least two new types of cation pores or channels. Thereby is the conductivity pathway for the anions, namely the AEP, in charge of the net anion loss at low ionic strength. The AEP pathway is extensively blocked by disulfonic stilbene compounds. The permeability ways for cations through these pores or channels are not yet explored.

FullText HTML FullText PDF DOI: 10.37871/jbres1204


Certificate of Publication




Copyright

© 2021 Fuhrmann GF, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Fuhrmann GF, Netter KJ. A Hundred-Year Researching History on the Low Ionic Strength in Red Blood Cells: Literature Review. J Biomed Res Environ Sci. 2021 Mar 11; 2(3): 139-168. doi: 10.37871/jbres1204, Article ID: jbres1204


Subject area(s)

References


  1. Gürber A. Salts of the Blood Bodies. Habilitation Thesis. Würzburg. Biochemical Journal. 1904;16:3-37.
  2. Bang I. Physico-chemical relationships of blood cells. Biochemische Zeitschrift. 1909;16:255-276.
  3. Höber R. Physical Chemistry of Cells and Tissues. 6th ed.1926; p. 478-480.
  4. Joel A. On the effect of certain indifferent narcotics on the permeability of red blood cells, Pflüger’s archive for the entire physiology of humans and animals. 1915;161:p. 5-44.
  5. Jacobs MH, Parpart AK. Osmotic properties of erythrocyte VI. The influence of the escape of salts on haemolysis by hypotonic solutions. Biol Bull Woods Hole. 1993 Dec;65(3):512-528.
  6. Ponder E, Saslow G. The measurement of red cell volume, III. Alteration of cell volume in extremely hypotonic solutions. J Physiol. 1931;73:267-296.
  7. Donnan FG. Theory of membrane equilibrium and membrane potential in the presence of nondialysing electrolytes. A contribution to physical-chemical physiology. Journal of Membrane Science. 1995 Mar 31;100(1):45-55.
  8. Netter H. About the electrolyte equilibrium in electively ion-permeable membranes and their biological significance. Pflüger’s archive. 1928;220:107-123.
  9. Maizels M. The permeation of erythrocytes by cations. Biochem J. 1935 Aug;29(8):1970-82. doi: 10.1042/bj0291970. PMID: 16745866; PMCID: PMC1266710.
  10. Davson H. Studies on the permeability of erythrocytes: The effect of reducing the salt content of the medium surrounding the cell. Biochem J. 1939 Mar;33(3):389-401. doi: 10.1042/bj0330389. PMID: 16746925; PMCID: PMC1264388.
  11. Wilbrandt W. The ion permeability of erythrocytes in dielectric solutions. Pflüger’s archive. Ges Physiol. 1940;246:537-556.
  12. Wilbrandt W. Osmotic methods for the determination of permeability constants on red blood cells in a physiological environment. Pflüger’s archive. 1938;241:289-301.
  13. Mond R. Reversal of the anion permeability of red blood cells into an elective permeability for cations. Pflügers Arch. Ges. Physiol. 1927;217:618-630.
  14. Michaelis L. Contribution to the Theory of Permeability of Membranes for Electrolytes. J Gen Physiol. 1925 Sep 18;8(2):33-59. doi: 10.1085/jgp.8.2.33. PMID: 19872189; PMCID: PMC2140746.
  15. Davson H, Danielli JF. Studies on the permeability of erythrocytes: The alleged reversal of ionic permeability at alkaline reaction. Biochem J. 1936 Feb;30(2):316-20. doi: 10.1042/bj0300316. PMID: 16746021; PMCID: PMC1263400.
  16. SKOU JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394-401. doi: 10.1016/0006-3002(57)90343-8. PMID: 13412736.
  17. Post Rl, Merritt CR, Kinsolving CR, Albright CD. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796-802. PMID: 14434402.
  18. Glynn IM. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278-310. doi: 10.1113/jphysiol.1956.sp005643. PMID: 13398911; PMCID: PMC1359203.
  19. Knauf PhA. Erythrocyte anion exchange and the band 3 protein. Current topics in membranes and transport. 1979;12:249-363.
  20. Wilbrandt W, Schatzmann HJ. Changes in the passive cation permeability of erythrocytes in low electrolyte media, Ciba Found. Study Group. Symposium No. 5. Regulation of the Inorganic Ion Content of the Cells. 1960 Jan 1;p. 34-40.
  21. Gun RG, Fröhlich O. In Methods in Enzymology. 1989; 173: p. 63.
  22. LaCelle PL, Rothsteto A. The passive permeability of the red blood cell in cations. J Gen Physiol. 1966 Sep;50(1):171-88. doi: 10.1085/jgp.50.1.171. PMID: 5971026; PMCID: PMC2225641.
  23. Harris EJ, Maizels M. Distribution of ions in suspensions of human erythrocytes. J Physiol. 1952 Sep;118(1):40-53. doi: 10.1113/jphysiol.1952.sp004771. PMID: 13000689; PMCID: PMC1392423.
  24. Donlon JA. Passive Cation Efflux from Human Erythrocytes Suspended in Low Ionic Strength Media. The University of Rochester. 1968.
  25. Donlon JA, Rothstein A. The cation permeability of erythrocytes in low ionic strength media of various tonicities. J Membr Biol. 1969 Dec;1(1):37-52. doi: 10.1007/BF01869773. PMID: 24174041.
  26. Cabantchik ZI, Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207-26. doi: 10.1007/BF01870088. PMID: 4838037.
  27. Steck TL. The band 3 protein of the human red cell membrane: a review. J Supramol Struct. 1978;8(3):311-24. doi: 10.1002/jss.400080309. PMID: 364194.
  28. Klocke RA. Rate of bicarbonate-chloride exchange in human red cells at 37 degrees C. J Appl Physiol. 1976 May;40(5):707-14. doi: 10.1152/jappl.1976.40.5.707. PMID: 931897.
  29. Crandall ED, Klocke RA, Forster RE. Hydroxyl ion movements across the human erythrocyte membrane. Measurement of rapid pH changes in red cell suspensions. J Gen Physiol. 1971 Jun;57(6):664-83. doi: 10.1085/jgp.57.6.664. PMID: 5576765; PMCID: PMC2203127.
  30. Cotterrell D, Whittam R. The influence of the chloride gradient across red cell membranes on sodium and potassium movements. J Physiol. 1971 May;214(3):509-36. doi: 10.1113/jphysiol.1971.sp009446. PMID: 4996368; PMCID: PMC1331852.
  31. Wieth JO, Dalmark M, Gunn RB, Tosteson DC. The transfer of monovalent inorganic anions through the red cell membrane. In Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch and W. Willmanns editors. Stuttgart: George Thieme Publishers; 1973. p. 71-76.
  32. Dalmark M, Wieth JO. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583-610. doi: 10.1113/jphysiol.1972.sp009914. PMID: 5071931; PMCID: PMC1331511.
  33. Fuhrmann GF, Dernedde S, Frenking G. Phloretin keto-enol tautomerism and inhibition of glucose transport in human erythrocytes (including effects of phloretin on anion transport). Biochim Biophys Acta. 1992 Sep 21;1110(1):105-11. doi: 10.1016/0005-2736(92)90300-b. PMID: 1390829.
  34. Knauf PA. Modification of anion and cation permeability of the human red cell membrane by amino and sulfhydryl reactive reagents. University Rochester, NY. 1970. p.132.
  35. Jones GS, Knauf PA. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J Gen Physiol. 1985 Nov;86(5):721-38. doi: 10.1085/jgp.86.5.721. PMID: 4067572; PMCID: PMC2228814.
  36. Knauf PA, Law FY, Tarshis T, Furuya W. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry. J Gen Physiol. 1984 May;83(5):683-701. doi: 10.1085/jgp.83.5.683. PMID: 6736916; PMCID: PMC2215659.
  37. Knauf PA, Fuhrmann GF, Rothstein S, Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363-86. doi: 10.1085/jgp.69.3.363. PMID: 15047; PMCID: PMC2215016.
  38. Zeidler RB, Kim HD. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells. J Cell Physiol. 1979 Sep;100(3):551-61. doi: 10.1002/jcp.1041000317. PMID: 39943.
  39. Passow H. Passive ion permeability and the concept of fixed charges. Proc. XXIII. Int’l Conf. Physiol Sc. Tokyo 555. 1965.
  40. Krüger KD. Kationenpermeabilität von Erythrozyten bei niedriger Ionenstärke unter besonderer Berücksichtigung des Glucosetransporters. Inaugural Dissertation. Universität Marburg. 1999.
  41. Bruness G, Götzky F. Kationenpermeabilität von Erythrozyten bei niedriger Ionenstärke in Abhängigkeit bestimmter Anionen und Inhibitoren unter besonderer Berücksichtigung des Glucosetransporters. Inaugural Dissertation. Universität Marburg. 2003.
  42. SEN AK, WIDDAS WF. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol. 1962 Mar;160(3):392-403. doi: 10.1113/jphysiol.1962.sp006854. PMID: 13910603; PMCID: PMC1359552.
  43. Fuhrmann GF, Götzky F, Krüger K, Martin HJ, Völker B. Cation permeability of red blood cells at low ionic strength, abstract T24, 12th Meeting of the European Association for Red Cell Research, Otzenhausen Germany. 1999.
  44. Turnheim K, Gruber J, Wachter C, Ruiz-Gutiérrez V. Membrane phospholipid composition affects function of potassium channels from rabbit colon epithelium. Am J Physiol. 1999 Jul;277(1):C83-90. doi: 10.1152/ajpcell.1999.277.1.C83. PMID: 10409111.
  45. Furuya W, Tarshis T, Law FY, Knauf PA. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J Gen Physiol. 1984 May;83(5):657-81. doi: 10.1085/jgp.83.5.657. PMID: 6736915; PMCID: PMC2215654.
  46. Ship S, Shami Y, Breuer W, Rothstein A. Synthesis of tritiated 4,4’-diisothiocyano-2,2’-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J Membr Biol. 1977 May 12;33(3-4):311-23. doi: 10.1007/BF01869522. PMID: 864693.
  47. Van Slyke DD, Wu H, McLearn FC. Studies of Gas and Electrolyte Equilibria in the Blood: V. Factors Controlling the Electrolyte and Water Distribution in the Blood. J Biol Chem. 1923 July 1;56(3):765-849. doi: 10.1016/S0021-9258(18)85558-2.
  48. Halperin JA, Brugnara C, Van Ha T, Tosteson DC. Voltage-activated cation permeability in high-potassium but not low-potassium red blood cells. Am J Physiol. 1990 Jun;258(6 Pt 1):C1169-72. doi: 10.1152/ajpcell.1990.258.6.C1169. PMID: 1694398.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search