Covid-19 Research

Mini Review

Synthesis of Zinc Oxide, Titanium Dioxide and Magnesium Dioxide Nanoparticles and Their Prospective in Pharmaceutical and Biotechnological Applications

Start Submission

Abstract

The use of nanoparticles for the therapeutic purpose is gaining pronounced importance. In the last two decades, a number of nanomedicines received regulatory approval and several showed promises through clinical trials. In this content, it is important to synthesize nanoparticles from various sources and to check its efficiency, especially its antibacterial activity. In today’s scenario number nanomedicines are proving useful to control multidrug resistance and since the mechanism of action of nanoparticles is totally different from the small molecules like antibiotics it obviates the chances of drug resistance. In this review, we discussed three metal-based nanoparticles prepared from various reducing sources namely Zinc Oxide Nanoparticle (ZnO NPs), Titanium Dioxide Nanoparticle (TiO2 NPs) and Magnesium Dioxide Nanoparticle (MnO2 NPs). The focus also made towards the safety assessment of the several nanoparticles. In addition, the exact interaction of the nanoparticles with the bacterial cell surface and the resultant changes also been highlighted. The review put forward the sources, method, and antibacterial success of these nanoparticles so that future nanomedicines could be put forward.

Abhinav Shrivastava, Ravi Kant Singh, Pankaj Kumar Tyagi* and Dilip Gore
,,
Volume2-Issue1 | Published: 2021-01-11

FullText HTML FullText PDF

References


  1. Doan Thi TU, Nguyen TT, Thi YD, Ta Thi KH, Phan BT, Pham KN. “Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities.” RSC Adv. 2020 Jun;vol.10,(40):p.23899–23907. doi: 10.1039/d0ra04926c.
  2. Tyagi S, Tyagi PK, Gola D, Chauhan N, Bharti RK, “Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential,” SN Appl. Sci. 2019 Dec;vol.1(12):p.1545. doi: 10.1007/s42452-019-1593-y.
  3. Shabaani M, Rahaiee S, Zare M. Jafari SM, “Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties,” LWT.2020 Dec;vol.13:p.110133. doi: 10.1016/j.lwt.2020.110133.
  4. Nabi et al G, “Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties,” Int. J. Environ. Anal. Chem, 2020, doi: 10.1080/03067319.2020.1722816.
  5. Ullah AKMA et al. “Green synthesis of Bryophyllum pinnatum aqueous leaf extract mediated bio-molecule capped dilute ferromagnetic α-MnO2 nanoparticles,” Mater. Res. Express, 2020 Jan;vol.7(1):p.15088, doi: 10.1088/2053-1591/ab6c20.
  6. Janaki AC, Sailatha E, Gunasekaran S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jun 5;144:17-22. doi: 10.1016/j.saa.2015.02.041. Epub 2015 Feb 14. PMID: 25748589.
  7. Tyagi PK, Gola D, Tyagi S, Mishra AK, Kumar A, Chauhan N, Ahuja A, Sirohi S. “Synthesis of zinc oxide nanoparticles and its conjugation with antibiotic: Antibacterial and morphological characterization,” Environ. Nanotechnology, Monit. Manag. 2020 Dec;vol.14. doi: 10.1016/j.enmm.2020.100391.
  8. Suresh D, Shobharani RM, Nethravathi PC, Pavan Kumar MA, Nagabhushana H, Sharma SC. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Apr 15;141:128-34. doi: 10.1016/j.saa.2015.01.048. Epub 2015 Jan 30. PMID: 25668693..
  9. Ramesh M, Anbuvannan M, Viruthagiri G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt B:864-70. doi: 10.1016/j.saa.2014.09.105. Epub 2014 Oct 5. PMID: 25459609.
  10. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N. “Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities,” Mater. Sci. Semicond. Process., 2015 Jun; vol.39; p. 621–628, doi: 10.1016/j.mssp.2015.06.005.
  11. Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim Pouran S. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artif Cells Nanomed Biotechnol. 2018 Jun;46(4):730-739. doi: 10.1080/21691401.2017.1337025. Epub 2017 Jun 15. PMID: 28617629.
  12. Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol. 2011 Jan;102(2):677-82. doi: 10.1016/j.biortech.2010.08.041. Epub 2010 Aug 24. PMID: 20884204.
  13. Tang C, Sun P, Yang J, Huang Y, Wu Y. Kinetics simulation of Cu and Cd removal and the microbial community adaptation in a periphytic biofilm reactor. Bioresour Technol. 2019 Mar;276:199-203. doi: 10.1016/j.biortech.2019.01.001. Epub 2019 Jan 2. PMID: 30623876.
  14. Soliman MMA, Alegria ECBA, Ribeiro APC, Alves MM, Saraiva MS, Fátima Montemor M, Pombeiro AJL. Green synthesis of zinc oxide particles with apple-derived compounds and their application as catalysts in the transesterification of methyl benzoates. Dalton Trans. 2020 May 19;49(19):6488-6494. doi: 10.1039/d0dt01069c. PMID: 32364212.
  15. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA. Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles. Molecules. 2013 May 28;18(6):6269-80. doi: 10.3390/molecules18066269. PMID: 23760028; PMCID: PMC6269905.
  16. Bai X, Li L, Liu H, Tan L, Liu T, Meng X. Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1308-17. doi: 10.1021/am507532p. Epub 2015 Jan 9. PMID: 25537255.
  17. Mayyas M, Mousavi M, Ghasemian MB, Abbasi R, Li H, Christoe MJ, Han J, Wang Y, Zhang C, Rahim MA, Tang J, Yang J, Esrafilzadeh D, Jalili R, Allioux FM, O’Mullane AP, Kalantar-Zadeh K. Pulsing Liquid Alloys for Nanomaterials Synthesis. ACS Nano. 2020 Oct 27;14(10):14070-14079. doi: 10.1021/acsnano.0c06724. Epub 2020 Sep 21. PMID: 32916049.
  18. Das J, Paul Das M, Velusamy P. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Mar;104:265-70. doi: 10.1016/j.saa.2012.11.075. Epub 2012 Dec 5. PMID: 23270884.
  19. Md Yusoff MF, Siti Rozaimah SA, Hassimi AH, Hawati J, Habibah A. “Performance of continuous pilot subsurface constructed wetland using Scirpus grossus for removal of COD, colour and suspended solid in recycled pulp and paper effluent,” Environ. Technol. Innov., 2019 Feb;vol. 13; P.346–352; doi: 10.1016/j.eti.2018.12.008.
  20. Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, Maaza M. Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine (Lond). 2019 Mar;14(6):655-673. doi: 10.2217/nnm-2018-0279. Epub 2019 Feb 4. PMID: 30714480.
  21. Zhang Y, Gao X, Zhi L, Liu X, Jiang W, Sun Y, Yang J. The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J Inorg Biochem. 2014 Jan;130:74-83. doi: 10.1016/j.jinorgbio.2013.10.004. Epub 2013 Oct 11. PMID: 24176922.
  22. Kermanizadeh A, Jacobsen NR, Roursgaard M, Loft S, Møller P. Hepatic Hazard Assessment of Silver Nanoparticle Exposure in Healthy and Chronically Alcohol Fed Mice. Toxicol Sci. 2017 Jul 1;158(1):176-187. doi: 10.1093/toxsci/kfx080. PMID: 28453772.
  23. Ali A, Mannan A, Hussain I, Zia M. “Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process,” Environ. Nanotechnology, Monit. Manag, 2018 May ;vol. 9;p.1–11: doi: 10.1016/j.enmm.2017.11.003.
  24. Raajshree RK, Brindha D. In Vivo Anticancer Activity of Biosynthesized Zinc Oxide Nanoparticle using Turbinaria conoides on a Dalton’s Lymphoma Ascites Mice Model. J Environ Pathol Toxicol Oncol. 2018;37(2):103-115. doi: 10.1615/JEnvironPatholToxicolOncol.2018025086. PMID: 30055546.
  25. Shankar S, Oun AA, Rhim JW. Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int J Biol Macromol. 2018 Feb;107(PtA):17-27. doi: 10.1016/j.ijbiomac.2017.08.129. Epub 2017 Sep 1. PMID: 28855135.
  26. Gupta A, Srivastava R. Mini submersible pump assisted sonochemical reactors: Large-scale synthesis of zinc oxide nanoparticles and nanoleaves for antibacterial and anti-counterfeiting applications. Ultrason Sonochem. 2019 Apr;52:414-427. doi: 10.1016/j.ultsonch.2018.12.020. Epub 2018 Dec 12. PMID: 30755387.
  27. Kil HS, Jung YJ, Moon JI, Song JH, Lim DY, Cho SB. Glycothermal Synthesis and Photocatalytic Properties of Highly Crystallized Anatase TiO2 Nanoparticles. J Nanosci Nanotechnol. 2015 Aug;15(8):6193-200. doi: 10.1166/jnn.2015.10430. PMID: 26369224.
  28. Pezzella A, Capelli L, Costantini A, Luciani G, Tescione F, Silvestri B, Vitiello G, Branda F. Towards the development of a novel bioinspired functional material: synthesis and characterization of hybrid TiO2/DHICA-melanin nanoparticles. Mater Sci Eng C Mater Biol Appl. 2013 Jan 1;33(1):347-55. doi: 10.1016/j.msec.2012.08.049. Epub 2012 Sep 5. PMID: 25428080.
  29. Bezares I, del Campo A, Herrasti P, Muñoz-Bonilla A. A simple aqueous electrochemical method to synthesize TiO2 nanoparticles. Phys Chem Chem Phys. 2015 Nov 21;17(43):29319-26. doi: 10.1039/c5cp05525c. PMID: 26469391.
  30. Zhang HM, Cao J, Tang BP, Wang YQ. Effect of TiO2 nanoparticles on the structure and activity of catalase. Chem Biol Interact. 2014 Aug 5;219:168-74. doi: 10.1016/j.cbi.2014.06.005. Epub 2014 Jun 12. PMID: 24931876.
  31. Mohamed HR. Estimation of TiO2 nanoparticle-induced genotoxicity persistence and possible chronic gastritis-induction in mice. Food Chem Toxicol. 2015 Sep;83:76-83. doi: 10.1016/j.fct.2015.05.018. Epub 2015 Jun 11. PMID: 26072100.
  32. A. Katsumiti et al., “Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive,” Nanotoxicology, vol. 9, no. 5, pp. 543–553, Aug. 2015, doi: 10.3109/17435390.2014.952362.
  33. Elgrabli D, Beaudouin R, Jbilou N, Floriani M, Pery A, Rogerieux F, Lacroix G. Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection. PLoS One. 2015 Apr 24;10(4):e0124490. doi: 10.1371/journal.pone.0124490. PMID: 25909957; PMCID: PMC4409301.
  34. Spadavecchia J, Méthivier C, Landoulsi J, Pradier CM. Interaction of ZnII porphyrin with TiO2 nanoparticles: from mechanism to synthesis of hybrid nanomaterials. Chemphyschem. 2013 Aug 5;14(11):2462-9. doi: 10.1002/cphc.201300193. Epub 2013 Jul 2. PMID: 23821481.
  35. Lin X, Li J, Ma S, Liu G, Yang K, Tong M, Lin D. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One. 2014 Oct 13;9(10):e110247. doi: 10.1371/journal.pone.0110247. PMID: 25310452; PMCID: PMC4195723.
  36. Kurepa J, Nakabayashi R, Paunesku T, Suzuki M, Saito K, Woloschak GE, Smalle JA. Direct isolation of flavonoids from plants using ultra-small anatase TiO2 nanoparticles. Plant J. 2014 Feb;77(3):443-53. doi: 10.1111/tpj.12361. Epub 2013 Nov 29. PMID: 24147867; PMCID: PMC3935720.
  37. Pang S, Huang JG, Su Y, Geng B, Lei SY, Huang YT, Lyu C, Liu XJ. Synthesis and Modification of Zn-doped TiO2 Nanoparticles for the Photocatalytic Degradation of Tetracycline. Photochem Photobiol. 2016 Sep;92(5):651-7. doi: 10.1111/php.12626. PMID: 27499076.
  38. Irshad MA, Nawaz R, Zia Ur Rehman M, Imran M, Ahmad J, Ahmad S, Inam A, Razzaq A, Rizwan M, Ali S. Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere. 2020 Nov;258:127352. doi: 10.1016/j.chemosphere.2020.127352. Epub 2020 Jun 10. PMID: 32554013.
  39. Hariharan D, Thangamuniyandi P, Jegatha Christy A, Vasantharaja R, Selvakumar P, Sagadevan S, Pugazhendhi A, Nehru LC. Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles. J Photochem Photobiol B. 2020 Jan;202:111636. doi: 10.1016/j.jphotobiol.2019.111636. Epub 2019 Nov 12. PMID: 31739259.
  40. Sellschopp K, Heckel W, Gäding J, Schröter CJ, Hensel A, Vossmeyer T, Weller H, Müller S, Vonbun-Feldbauer GB. Shape-controlling effects of hydrohalic and carboxylic acids in TiO2 nanoparticle synthesis. J Chem Phys. 2020 Feb 14;152(6):064702. doi: 10.1063/1.5138717. PMID: 32061241.
  41. Gahlot S, Dappozze F, Singh D, Ahuja R, Cardenas L, Burel L, Amans D, Guillard C, Mishra S. Room-temperature conversion of Cu2-xSe to CuAgSe nanoparticles to enhance the photocatalytic performance of their composites with TiO2. Dalton Trans. 2020 Mar 17;49(11):3580-3591. doi: 10.1039/c9dt04726c. PMID: 32129381.
  42. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science. 2001 Mar 9;291(5510):1947-9. doi: 10.1126/science.1058120. PMID: 11239151.
  43. Ma X, Sharifan H, Dou F, Sun W, “Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles,” Chem. Eng. J. 2020 Mar; vol.384, doi: 10.1016/j.cej.2019.123802.
  44. [44] Wu Y, Ali MRK, K. Chen, N. Fang, El-Sayed M. A. “Gold nanoparticles in biological optical imaging,” Nano Today, 2019 Feb; vol.24; Elsevier B.V, p.120–140, doi: 10.1016/j.nantod.2018.12.006.
  45. Patelli N, Migliori A, Morandi V, Pasquini L. One-Step Synthesis of Metal/Oxide Nanocomposites by Gas Phase Condensation. Nanomaterials (Basel). 2019 Feb 6;9(2):219. doi: 10.3390/nano9020219. PMID: 30736375; PMCID: PMC6409555.
  46. Lu H, Peng Y, Ye H, Cui X, Hu J, Gu H, Khlobystov AN, Green MA, Blower PJ, Wyatt PB, Gillin WP, Hernández I. Sensitization, energy transfer and infra-red emission decay modulation in Yb3+-doped NaYF4 nanoparticles with visible light through a perfluoroanthraquinone chromophore. Sci Rep. 2017 Jul 11;7(1):5066. doi: 10.1038/s41598-017-05350-9. PMID: 28698586; PMCID: PMC5505979.
  47. Montaser AS, Wassel AR, Al-Shaye’a ON. Synthesis, characterization and antimicrobial activity of Schiff bases from chitosan and salicylaldehyde/TiO2 nanocomposite membrane. Int J Biol Macromol. 2019 Mar 1;124:802-809. doi: 10.1016/j.ijbiomac.2018.11.229. Epub 2018 Nov 28. PMID: 30502423.
  48. Alberti S, Villa S, Singh G, Seland F, Martinelli A, Ferretti M, Canepa F, Caratto V. Systematic Study on TiO2 Crystallization via Hydrothermal Synthesis in the Presence of Different Ferrite Nanoparticles as Nucleation Seeds. J Nanosci Nanotechnol. 2019 Aug 1;19(8):4994-4999. doi: 10.1166/jnn.2019.16787. PMID: 30913812.
  49. Shah Z, Nazir S, Mazhar K, Abbasi R, Samokhvalov IM. PEGylated doped- and undoped-TiO2 nanoparticles for photodynamic Therapy of cancers. Photodiagnosis Photodyn Ther. 2019 Sep;27:173-183. doi: 10.1016/j.pdpdt.2019.05.019. Epub 2019 May 25. PMID: 31136827.
  50. Gaballah ST, El-Nazer HA, Abdel-Monem RA, El-Liethy MA, Hemdan BA, Rabie ST. Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int J Biol Macromol. 2019 Jan;121:707-717. doi: 10.1016/j.ijbiomac.2018.10.085. Epub 2018 Oct 16. PMID: 30340001.
  51. Mragui A.El, Daou I, Zegaoui O. “Influence of the preparation method and ZnO/(ZnO + TiO2) weight ratio on the physicochemical and photocatalytic properties of ZnO-TiO2 nanomaterials,” Catal. Today, 2019 Feb; vol.321–322; p.41–51: doi: 10.1016/j.cattod.2018.01.016.
  52. Locatelli E, Li Y, Monaco I, Guo W, Maturi M, Menichetti L, Armanetti P, Martin RC, Comes Franchini M. A novel theranostic gold nanorods- and Adriamycin-loaded micelle for EpCAM targeting, laser ablation, and photoacoustic imaging of cancer stem cells in hepatocellular carcinoma. Int J Nanomedicine. 2019 Mar 13;14:1877-1892. doi: 10.2147/IJN.S197265. PMID: 30936691; PMCID: PMC6422422.
  53. Salunke BK, Sawant SS, Lee SI, Kim BS. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2015 Jul;99(13):5419-27. doi: 10.1007/s00253-015-6559-4. Epub 2015 Apr 7. PMID: 25846336.
  54. Abulizi A, Yang GH, Okitsu K, Zhu JJ. Synthesis of MnO2 nanoparticles from sonochemical reduction of MnO4(-) in water under different pH conditions. Ultrason Sonochem. 2014 Sep;21(5):1629-34. doi: 10.1016/j.ultsonch.2014.03.030. Epub 2014 Apr 13. PMID: 24793308.
  55. Moon SA, Salunke BK, Alkotaini B, Sathiyamoorthi E, Kim BS. Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol. 2015 Aug;9(4):220-5. doi: 10.1049/iet-nbt.2014.0051. PMID: 26224352.
  56. Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012 Oct 7;137(19):4552-8. doi: 10.1039/c2an35700c. PMID: 22900262.
  57. Han B, Liu W, Zhao D.“In-Situ Oxidative Degradation of Emerging Contaminants in Soil and Groundwater Using a New Class of Stabilized MnO2 Nanoparticles Hydrodechlorination removal of chlorinated contaminantes View project Pyrolysis of different biomass pre-impregnated with steel pickling waste liquor to prepare magnetic biochars and their use for the degradation of metronidazole View project,” Elsevier, 2014; doi: 10.4018/978-1-5225-0585-3.ch006.
  58. Dutta RK, Nenavathu BP, Talukdar S. Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles. Colloids Surf B Biointerfaces. 2014 Feb 1;114:218-24. doi: 10.1016/j.colsurfb.2013.10.007. Epub 2013 Oct 16. PMID: 24200949.
  59. Janaki AC, Sailatha E, Gunasekaran S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jun 5;144:17-22. doi: 10.1016/j.saa.2015.02.041. Epub 2015 Feb 14. PMID: 25748589.
  60. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog. 2018 Feb;115:57-63. doi: 10.1016/j.micpath.2017.12.039. Epub 2017 Dec 14. PMID: 29248514.
  61. Kairyte K, Kadys A, Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B. 2013 Nov 5;128:78-84. doi: 10.1016/j.jphotobiol.2013.07.017. Epub 2013 Jul 29. PMID: 24035847.
  62. Dědková K, Lang J, Matějová K, Peikertová P, Holešinský J, Vodárek V, Kukutschová J. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation. J Photochem Photobiol B. 2015 Aug;149:265-71. doi: 10.1016/j.jphotobiol.2015.06.018. Epub 2015 Jun 19. PMID: 26114221.
  63. Dhanalekshmi KI, Meena KS. Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jul 15;128:887-90. doi: 10.1016/j.saa.2014.02.063. Epub 2014 Mar 7. PMID: 24709355.
  64. Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim SK, Iyappan M, Siva C. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Apr 15;107:82-9. doi: 10.1016/j.saa.2012.12.083. Epub 2013 Jan 5. PMID: 23416912.
  65. Yeniyol S, He Z, Yüksel B, Boylan RJ, Urgen M, Ozdemir T, Ricci JL. Antibacterial Activity of As-Annealed TiO2 Nanotubes Doped with Ag Nanoparticles against Periodontal Pathogens. Bioinorg Chem Appl. 2014;2014:829496. doi: 10.1155/2014/829496. Epub 2014 Aug 18. PMID: 25202230; PMCID: PMC4151538.
  66. Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy. Mater Sci Eng C Mater Biol Appl. 2015 Jun;51:158-66. doi: 10.1016/j.msec.2015.02.046. Epub 2015 Feb 26. PMID: 25842121.
  67. Ahmad R, Mohsin M, Ahmad T, Sardar M. Alpha amylase assisted synthesis of TiO2 nanoparticles: structural characterization and application as antibacterial agents. J Hazard Mater. 2015;283:171-7. doi: 10.1016/j.jhazmat.2014.08.073. Epub 2014 Sep 18. PMID: 25270329.
  68. Lipovsky A, Gedanken A, Lubart R. Visible light-induced antibacterial activity of metaloxide nanoparticles. Photomed Laser Surg. 2013 Nov;31(11):526-30. doi: 10.1089/pho.2012.3339. Epub 2013 Feb 28. PMID: 23448383.
  69. Uhm SH, Lee SB, Song DH, Kwon JS, Han JG, Kim KN. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications. J Nanosci Nanotechnol. 2014 Oct;14(10):7847-54. doi: 10.1166/jnn.2014.9412. PMID: 25942879.
  70. Nail K, Koshy M. Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. J Apple Microbiol. 2014 Oct;117(4):972-83. doi: 10.1111/jam.12589. Epub 2014 Jul 14. PMID: 24965598.
  71. Li S, Zhao X, Jiang H. “Synergistic Antibacterial Activity of New Isomeric Carborane Derivatives Through Combination with Nanoscaled Titania TiO2 nanowhiskers re-introduced the biomedical applicaitons of poephyrin derivatives (tetra sulphonatophenyl porphyrin) by mitigating it’s toxic effects. View project,” Artic. J. Biomed. Nanotechnol., 2013, doi: 10.1166/jbn.2013.1550.
  72. Li J, Qiao Y, Zhu H, Meng F, Liu X. Existence, release, and antibacterial actions of silver nanoparticles on Ag-PIII TiO2 films with different nanotopographies. Int J Nanomedicine. 2014 Jul 16;9:3389-402. doi: 10.2147/IJN.S63807. PMID: 25075186; PMCID: PMC4106954.
  73. Lee WS, Park YS, Cho YK. Significantly enhanced antibacterial activity of TiO2 nanofibers with hierarchical nanostructures and controlled crystallinity. Analyst. 2015 Jan 21;140(2):616-22. doi: 10.1039/c4an01682c. PMID: 25426595.
  74. Kunkalekar RK, Prabhu MS, Naik MM, Salker AV. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids Surf B Biointerfaces. 2014 Jan 1;113:429-34. doi: 10.1016/j.colsurfb.2013.09.036. Epub 2013 Sep 27. PMID: 24140741.
  75. Wang L, He H, Zhang C, Sun L, Liu S, Wang S. Antimicrobial activity of silver loaded MnO2 nanomaterials with different crystal phases against Escherichia coli. J Environ Sci (China). 2016 Mar;41:112-120. doi: 10.1016/j.jes.2015.04.026. Epub 2015 Aug 10. PMID: 26969056.
  76. Sivaraj D, Vijayalakshmi K. Preferential killing of bacterial cells by hybrid carbon nanotube-MnO2 nanocomposite synthesized by novel microwave assisted processing. Mater Sci Eng C Mater Biol Appl. 2017 Dec 1;81:469-477. doi: 10.1016/j.msec.2017.08.027. Epub 2017 Aug 11. PMID: 28887999.
  77. Anwar Y. Antibacterial and lead ions adsorption characteristics of chitosan-manganese dioxide bionanocomposite. Int J Biol Macromol. 2018 May;111:1140-1145. doi: 10.1016/j.ijbiomac.2018.01.096. Epub 2018 Feb 19. PMID: 29415409.
  78. Wang L, Ma L, Yang Z. “Spatial variation and risk assessment of heavy metals in paddy rice from Hunan Province, Southern China.” Int. J. Environ. Sci. Technol. 2018 Jul;vol.15(7):p. 1561–1572. doi: 10.1007/s13762-017-1504-y.
  79. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z.“An Introduction to Nanotechnology,” in Interface Science and Technology, 2019 vol. 28, Elsevier B.V, p. 1–27.
  80. Azevedo MM, Ramalho P, Silva AP, Teixeira-Santos R, Pina-Vaz C, Rodrigues AG. Polyethyleneimine and polyethyleneimine-based nanoparticles: novel bacterial and yeast biofilm inhibitors. J Med Microbiol. 2014 Sep; vol.63;P. 1167-1173. doi: 10.1099/jmm.0.069609-0. Epub 2014 Jun 9. PMID: 24913563.
  81. Shrestha A, Kishen A. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. J Endod. 2014 Oct;40(10):1604-10. doi: 10.1016/j.joen.2014.03.009. Epub 2014 Apr 29. PMID: 25260731.
  82. Adhikari MD, Goswami S, Panda BR, Chattopadhyay A, Ramesh A. Membrane-directed high bactericidal activity of (gold nanoparticle)-polythiophene composite for niche applications against pathogenic bacteria. Adv Healthc Mater. 2013 Apr;2(4):599-606. doi: 10.1002/adhm.201200278. Epub 2012 Nov 22. PMID: 23184755.
  83. Ansari MA, Khan HM, Alzohairy MA, Jalal M, Ali SG, Pal R, Musarrat J. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2015 Jan;31(1):153-64. doi: 10.1007/s11274-014-1757-2. Epub 2014 Oct 11. PMID: 25304025.
  84. Tyagi PK. “Use of biofabricated silver nanoparticles-conjugated with antibiotic against multidrug resistant pathogenic bacteria.” Biol. Insights. 2016 Dec;Vol.1:p.1-6.
  85. Chatterjee A, Perevedentseva E, Jani M, Cheng CY, Ye YS, Chung PH, Cheng CL. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J Biomed Opt. 2015 May;20(5):051014. doi: 10.1117/1.JBO.20.5.051014. PMID: 25500913.
  86. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf. 2013 Feb;88:48-54. doi: 10.1016/j.ecoenv.2012.10.018. Epub 2012 Nov 20. PMID: 23174269.
  87. Beranová J, Seydlová G, Kozak H, Benada O, Fišer R, Artemenko A, Konopásek I, Kromka A. Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells. FEMS Microbiol Lett. 2014 Feb;351(2):179-86. doi: 10.1111/1574-6968.12373. Epub 2014 Jan 31. PMID: 24386940.
  88. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine. 2014 Aug;10(6):1195-208. doi: 10.1016/j.nano.2014.02.012. Epub 2014 Mar 6. PMID: 24607937.
  89. Salati S, Doudi M, Madani M. “The biological synthesis of silver nanoparticles by mango plant extract and its anti-candida effects.” J Appl Biotechnol Reports. 2018 Sep:vol.5(4);p.157–161. doi: 10.29252/JABR.05.04.04.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • zenodo
  • openaire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • FIT
  • CrossRef
  • LUBsearch
  • BIUSante
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search

 

 

COVID-19 alert