Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 8840461174

Metabolic Disturbance in Patients with Muscular Dystrophy and Reflection of Altered Enzyme Activity in Dystrophic Muscle: One Critical View

Medicine Group    Start Submission

Niraj Kumar Srivastava*, Somnath Mukherjee and Vijay Nath Mishra

Volume1-Issue8
Dates: Received: 2020-12-04 | Accepted: 2020-12-14 | Published: 2020-12-15
Pages: 393-403

Abstract

Muscular dystrophies are inherited myogenic diseases and considered by progressive muscle wasting and weakness with variable distribution and severity. The essential characteristics of muscular dystrophies are selective involvement, significant wasting and weakness of muscles. The most common and frequent types of muscular dystrophies are Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), Facioscapulohumeral Dystrophy (FSHD) and Limb Girdle Muscular Dystrophy (LGMD). Metabolic disturbance is observed in muscular dystrophy patients (DMD, BMD, FSHD and LGMD-2B). Alteration in the level of metabolites (BCAA, Glu/ Gln, Ace, alanine, glucose, histidine, propionate, tyrosine and fumarate) in dystrophic muscle reflects the alteration in the activity of enzymes. Collectively, these observations propose that there is alteration in the rate of glycolysis, TCA cycle, fatty acid oxidation, gluconeogenesis pathway and protein metabolism (catabolism & anabolism) in the muscular dystrophy patients. Metabolic disturbance, further provide the explanation about the pathophysiology of muscular dystrophy.

FullText HTML FullText PDF DOI: 10.37871/jbres1171


Certificate of Publication




Copyright

© 2020 Srivastava NK, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Srivastava NK, Mukherjee S, Mishra VN. Metabolic Disturbance in Patients with Muscular Dystrophy and Reflection of Altered Enzyme Activity in Dystrophic Muscle: One Critical View. J Biomed Res Environ Sci. 2020 Dec 15; 1(8): 393-403. doi: 10.37871/jbres1171, Article ID: jbres1171


Subject area(s)

References


  1. Anthony Amato, James A. Russell. Neuromuscular Disorders. Published by McGraw-Hill Professional; 2008.
  2. Anthony H, Schapira V, Robert C. Griggs. Muscle Diseases. Published by Butterworth-Heinemann. 1999.
  3. Alan Emery. Muscular Dystrophy: The Facts. Published by Oxford University Press. 2000.
  4. Alan EH Emery. Neuromuscular Disorders: Clinical and Molecular Genetics. Wiley. 1998.
  5. Centers for Disease Control and Prevention (CDC). Prevalence of Duchenne/Becker muscular dystrophy among males aged 5-24 years - four states, 2007. MMWR Morb Mortal Wkly Rep. 2009 Oct 16;58(40):1119-22. PMID: 19834452.
  6. Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment. EMBO Rep. 2004 Sep;5(9):872-6. doi: 10.1038/sj.embor.7400221. PMID: 15470384; PMCID: PMC1299132.
  7. Jones H, De Vivo DC, Darras BT. Neuromuscular disorders of infancy, childhood and adolescence. A clinician’s approach. Oxford: Butterworth-Heinemann; 2003.
  8. Chenard AA, Becane HM, Tertrain F, de Kermadec JM, Weiss YA. Ventricular arrhythmia in Duchenne muscular dystrophy: prevalence, significance and prognosis. Neuromuscul Disord. 1993 May;3(3):201-6. doi: 10.1016/0960-8966(93)90060-w. PMID: 7691292.
  9. Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. Neurol India. 2008 Jul-Sep;56(3):236-47. doi: 10.4103/0028-3886.43441. PMID: 18974549.
  10. Lim KRQ, Nguyen Q, Yokota T. DUX4 Signalling in the Pathogenesis of Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci. 2020 Jan 22;21(3):729. doi: 10.3390/ijms21030729. PMID: 31979100; PMCID: PMC7037115.
  11. Wang LH, Tawil R. Facioscapulohumeral Dystrophy. Curr Neurol Neurosci Rep. 2016 Jul;16(7):66. doi: 10.1007/s11910-016-0667-0. PMID: 27215221.
  12. Tawil R, van der Maarel SM, Tapscott SJ. Facioscapulohumeral dystrophy: the path to consensus on pathophysiology. Skelet Muscle. 2014 Jun 10;4:12. doi: 10.1186/2044-5040-4-12. PMID: 24940479; PMCID: PMC4060068.
  13. Deenen JC, Arnts H, van der Maarel SM, Padberg GW, Verschuuren JJ, Bakker E, Weinreich SS, Verbeek AL, van Engelen BG. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology. 2014 Sep 16;83(12):1056-9. doi: 10.1212/WNL.0000000000000797. Epub 2014 Aug 13. PMID: 25122204; PMCID: PMC4166358.
  14. Tawil R. Facioscapulohumeral muscular dystrophy. Handb Clin Neurol. 2018;148:541-548. doi: 10.1016/B978-0-444-64076-5.00035-1. PMID: 29478599.
  15. Tawil R, Van Der Maarel SM. Facioscapulohumeral muscular dystrophy. Muscle Nerve. 2006 Jul;34(1):1-15. doi: 10.1002/mus.20522. PMID: 16508966.
  16. Handa V, Mital A, Gupta M, Goyle S. Deficiency of the 50 kDa dystrophin-associated-glycoprotein (adhalin) in an Indian autosomal recessive limb girdle muscular dystrophy patient: Immunochemical analysis and clinical aspects. Neurol India. 2001 Mar;49(1):19-24. PMID: 11303236.
  17. Khadilkar SV, Singh RK. Current concepts in Limb girdle muscular dystrophy. Does hip adductor weakness mark the Indian phenotype? Reviews in Neurology. 2000:34-43.
  18. Khadilkar SV, Faldu HD, Patil SB, Singh R. Limb-girdle Muscular Dystrophies in India: A Review. Ann Indian Acad Neurol. 2017 Apr-Jun;20(2):87-95. doi: 10.4103/aian.AIAN_81_17. PMID: 28615891; PMCID: PMC5470147.
  19. Murphy AP, Straub V. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies. J Neuromuscul Dis. 2015 Jul 22;2(s2):S7-S19. doi: 10.3233/JND-150105. PMID: 27858764; PMCID: PMC5271430.
  20. Patel NJ, Van Dyke KW, Espinoza LR. Limb-Girdle Muscular Dystrophy 2B and Miyoshi Presentations of Dysferlinopathy. Am J Med Sci. 2017 May;353(5):484-491. doi: 10.1016/j.amjms.2016.05.024. Epub 2016 May 30. PMID: 28502335.
  21. Lehninger AL, Nelson DL, Cox MM. Lehninger Principles of Biochemistry. Fourth ed. New York: W.H. Freeman; 2005.
  22. Beckonert O, Keun HC, Ebbels T M D, Bundy JG, Holmes E, Lindon, J C, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMRspectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols. 2007;2:2692–2703. https://go.nature.com/385fmfw
  23. Fillet M, Frédérich M. The emergence of metabolomics as a key discipline in the drug discovery process. Drug Discov Today Technol. 2015 Jun;13:19-24. doi: 10.1016/j.ddtec.2015.01.006. Epub 2015 Feb 28. PMID: 26190679.
  24. Murray KR, Granner DK, Mayes PA, Rodwell VW. Harper’s illustrated biochemistry. Lange Medical Books/McGraw-Hill. Twenty-sixth edition. 2000.
  25. Poortmans JR. Principles of exercise biochemistry. Third edition. Karger publisher. 2000.
  26. Gilbert HF.Basic concept in Biochemistry. A Student survival guide. Second Edition. McGraw-Hill, Health Professions Division. New York. 2000.
  27. Harold FM. The vital force: A study in bioenergetics. H. Freeman and Company, NewYork. 1986. https://bit.ly/3gMPucg
  28. Randle PJ. Metabolic fuel selection: general integration at the whole-body level. Proc Nutr Soc. 1995 Mar;54(1):317-27. doi: 10.1079/pns19950057. PMID: 7568263.
  29. Montoya HJ, Kemper HCG, Saris WHM and Washburn RA, eds. Measuring physical activity and energy expenditure. Champaign, IL: Human kinetics, 1996.
  30. Cerny FJ & Burton HW. Exercise physiology for health care professionals. Champaign, IL: Human kinetics, 2003.
  31. Nagy B & Samaha FJ.Physiology of normal and disease muscle.In Frolich, ED, editor: Pathophysiology, Philadelphia, JB Lippincott, 1983.
  32. Raymond Delacy Adams, Derek Denny-Brown, Carl M. Pearson. Diseases of Muscle: A Study in Pathology. Published by Harper & Row. 1962.
  33. Emery AE. The muscular dystrophies. Lancet. 2002 Feb 23;359(9307):687-695. doi: 10.1016/S0140-6736(02)07815-7. PMID: 11879882.
  34. Lindsay A, Chamberlain CM, Witthuhn BA, Lowe DA, Ervasti JM. Dystrophinopathy-associated dysfunction of Krebs cycle metabolism. Hum Mol Genet. 2019 Mar 15;28(6):942-951. doi: 10.1093/hmg/ddy404. PMID: 30476171; PMCID: PMC6400043.
  35. Demos J, Dreyfus Jc, Schapira F, Schapira G. Activités enzymatiques du muscle humain; recherches sur la biochimie comparée de l’homme normal et myopathique, et du rat [Enzyme activity in human muscles; research on comparative biochemistry in normal and myopathic men, and in rats]. Clin Chim Acta. 1956 Sep-Oct;1(5):434-49. French. doi: 10.1016/0009-8981(56)90016-x. PMID: 13396986.
  36. Di Mauro S, Angelini C, Catani C. Enzymes of the glycogen cycle and glycolysis in various human neuromuscular disorders. J Neurol Neurosurg Psychiatry. 1967 Oct;30(5):411-5. doi: 10.1136/jnnp.30.5.411. PMID: 4228900; PMCID: PMC496216.
  37. VIGNOS PJ Jr, LEFKOWITZ M. A biochemical study of certain skeletal muscle constituents in human progressive muscular dystrophy. J Clin Invest. 1959 Jun;38(6):873-81. doi: 10.1172/JCI103869. PMID: 13654523; PMCID: PMC293236.
  38. Vretou-Jockers E, Vassilopoulos D. Skeletal muscle CK-B activity in neurogenic muscular atrophies. Journal of Neurology. 1989;236:184-287. https://bit.ly/3qUHpHm
  39. Heyck H, Laudahn G, Luders CJ. Fermentaktivitatsbestimmungen in der gesunden, menschlichen Muskulatur und bei Myopathien. II Mitteilung. Enzymaktivitatsveranderungen im Musket bei Dystrophia musculorum progressiva. Klinische Wochenschrift. 1963;41: 500.
  40. Hooft G, de Laey P, Lambert Y. Etude comparative de I’ activite enzymatique du tissu musculaire de I’enfant normal et d’enfants atteints de dystrophie musculaire progressive aux différent stades de la maladie. Revue Française d ‘Etudes Cliniques et Biologiques. 1966;11: 510.
  41. Kleine TO, Chlond H. Enzymmuster gesunder skelettherz und glatter Muskelatur des Menschen sowie ihrer pathologischen Veranderungen. Mit besonderer Berucksichtigung der progressiven muskeldystrophie (Erb). Clin Chim Acta. 1967;15: 19.
  42. Ge Y, Molloy MP, Chamberlain JS, Andrews PC. Proteomic analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression and enzymatic activity. Proteomics. 2003 Oct;3(10):1895-903. doi: 10.1002/pmic.200300561. PMID: 14625851.
  43. Kar NC, Pearson CM, Verity MA. Muscle fructose 1,6-diphosphatase deficiency associated with an atypical central core disease. J Neurol Sci. 1980 Nov;48(2):243-56. doi: 10.1016/0022-510x(80)90204-x. PMID: 6253603.
  44. Kar NC, Pearson CM. Muscle adenylic acid deaminase activity. Selective decrease in early-onset Duchenne muscular dystrophy. Neurology. 1973 May;23(5):478-82. doi: 10.1212/wnl.23.5.478. PMID: 4735464.
  45. Wagner KR, Kauffman FC, Max SR. The pentose phosphate pathway in regenerating skeletal muscle. Biochem J. 1978 Jan 15;170(1):17-22. doi: 10.1042/bj1700017. PMID: 629775; PMCID: PMC1183856.
  46. McCaman MW. Dehydrogenase Activities in Dystrophic Mice. Science. 1960 Sep 2;132(3427):621-622. doi: 10.1126/science.132.3427.621. PMID: 17842210.
  47. Cutillo S, Colletta A, Lupi L, Canani MB. The relationship between lactic and α-hydroxybutyric dehydrogenase of the serum in children with progressive muscular dystrophy. Bollettino della Societa Italiana di Biologia Sperimentale. 1962;38: 691.
  48. Pearson CM, Kar NC. Muscle breakdown and lysosomal activation (biochemistry). Ann N Y Acad Sci. 1979;317:465-77. doi: 10.1111/j.1749-6632.1979.tb56562.x. PMID: 289325.
  49. Doran P, Dowling P, Donoghue P, Buffini M, Ohlendieck K. Reduced expression of regucalcin in young and aged mdx diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient muscle. Biochim Biophys Acta. 2006 Apr;1764(4):773-85. doi: 10.1016/j.bbapap.2006.01.007. Epub 2006 Jan 31. PMID: 16483859.
  50. Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR Spectroscopy for Metabolomics Research. Metabolites. 2019 Jun 27;9(7):123. doi: 10.3390/metabo9070123. PMID: 31252628; PMCID: PMC6680826.
  51. Venkatasubramanian PN, Arús C, Bárány M. Two-dimensional proton magnetic resonance of human muscle extracts. Clin Physiol Biochem. 1986;4(5):285-92. PMID: 3022979.
  52. Sharma U, Atri S, Sharma MC, Sarkar C, Jagannathan NR. Biochemical characterization of muscle tissue of limb girdle muscular dystrophy: An 1H and 13C NMR study. NMR Biomed. 2003 Jun;16(4):213-23. doi: 10.1002/nbm.832. PMID: 14558119.
  53. Sharma U, Atri S, Sharma MC, Sarkar C, Jagannathan NR. Skeletal muscle metabolism in Duchenne Muscular Dystrophy (DMD): An In vitro proton NMR spectroscopy study. Magn Reson Imaging. 2003 Feb;21(2):145-53. doi: 10.1016/s0730-725x(02)00646-x. PMID: 12670601.
  54. Srivastava NK, Yadav R, Mukherjee S, Sinha N. Perturbation of muscle metabolism in patients with muscular dystrophy in early or acute phase of disease: In vitro, high resolution NMR spectroscopy based analysis. Clin Chim Acta. 2018 Mar;478:171-181. doi: 10.1016/j.cca.2017.12.036. Epub 2017 Dec 24. PMID: 29278724.
  55. Kar NC, Pearson CM. Arylamidase and cathepsin-A activity of normal and dystrophic human muscle. Proc Soc Exp Biol Med. 1976 Mar;151(3):583-6. doi: 10.3181/00379727-151-39264. PMID: 3799.
  56. Kar NC, Pearson CM. Early elevation of cathepsin B1 in human muscle disease. Biochem Med. 1977 Aug;18(1):126-9. doi: 10.1016/0006-2944(77)90059-x. PMID: 901428.
  57. Kar NC, Pearson CM. Dipeptidyl peptidases in human muscle disease. Clin Chim Acta. 1978 Jan 2;82(1-2):185-92. doi: 10.1016/0009-8981(78)90042-6. PMID: 618680.
  58. Nurjhan N, Bucci A, Perriello G, Stumvoll M, Dailey G, Bier DM, Toft I, Jenssen TG, Gerich JE. Glutamine: A major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J Clin Invest. 1995 Jan;95(1):272-277. doi: 10.1172/JCI117651. PMID: 7814625; PMCID: PMC295425.
  59. Biolo G, Zorat F, Antonione R, Ciocchi B. Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol. 2005 Oct;37(10):2169-2179. doi: 10.1016/j.biocel.2005.05.001. PMID: 16084750.
  60. Ramadasan-Nair R, Gayathri N, Mishra S, Sunitha B, Mythri RB, Nalini A, Subbannayya Y, Harsha HC, Kolthur-Seetharam U, Srinivas Bharath MM. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies. J Biol Chem. 2014 Jan 3;289(1):485-509. doi: 10.1074/jbc.M113.493270. Epub 2013 Nov 12. PMID: 24220031; PMCID: PMC3879571.
  61. Green DE. Fatty acid oxidation in soluble systems of animal tissues. Biol Rev. 1954;29:330-366. doi: 10.1111/j.1469-185X.1954.tb00599.x
  62. LYNEN F, OCHOA S. Enzymes of fatty acid metabolism. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):299-314. doi: 10.1016/0006-3002(53)90149-8. PMID: 13115439.
  63. Koeslag JH, Levinrad LI, Lochner JD, Sive AA. Post-exercise ketosis in post-prandial exercise: effect of glucose and alanine ingestion in humans. J Physiol. 1985 Jan;358:395-403. doi: 10.1113/jphysiol.1985.sp015557. PMID: 3884775; PMCID: PMC1193348.
  64. Koeslag JH, Noakes TD, Sloan AW. The effects of alanine, glucose and starch ingestion on the ketosis produced by exercise and by starvation. J Physiol. 1982 Apr;325:363-376. doi: 10.1113/jphysiol.1982.sp014155. PMID: 7050344; PMCID: PMC1251399.
  65. Nishio H, Wada H, Matsuo T, Horikawa H, Takahashi K, Nakajima T, Matsuo M, Nakamura H. Glucose, free fatty acid and ketone body metabolism in Duchenne muscular dystrophy. Brain Dev. 1990;12(4):390-402. doi: 10.1016/s0387-7604(12)80071-4. PMID: 2240459.
  66. Griffin JL, Sang E, Evens T, Davies K, Clarke K. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy. FEBS Lett. 2002 Oct 23;530(1-3):109-16. doi: 10.1016/s0014-5793(02)03437-3. PMID: 12387876.
  67. Abdullah M, Kornegay JN, Honcoop A, Parry TL, Balog-Alvarez CJ, O’Neal SK, Bain JR, Muehlbauer MJ, Newgard CB, Patterson C, Willis MS. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In vivo. Metabolites. 2017 Jul 29;7(3):38. doi: 10.3390/metabo7030038. PMID: 28758940; PMCID: PMC5618323.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search