Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 8911196154

Arsenic Mobilization Process in Shallow Aquifer of Bengal Delta Plain: A Field Scale Study to Identify the Role of Coliform Bacteria

Environmental Sciences    Start Submission

Pinaki Ghosh, Ayan Das, Madhurina Majunder, Samir Kumar Mukherjee and Debashis Chatterjee*

Volume1-Issue8
Dates: Received: 2020-09-28 | Accepted: 2020-12-04 | Published: 2020-12-05
Pages: 372-382

Abstract

In Bengal Delta Plain (BDP), shallow aquifer (<50 m) is often contaminated with Arsenic (As). The phenomenon is wide spread in nature thought the BDP notable in Nadia district of west Bengal. The present study highlights a primary screening of As, Fe, MPN and FC in monitored shallow wells. The study designed for two different sites (site-A, High As and site-B Low As area). The water quality monitoring results suggest that high As concentration (Range- 103-171 μgL-1) has been noticed in site A when compared with site B (range-53-99 μgL-1). In sites A, the Fe concentration is high and low in site B. The correlation study (r2) between arsenic and iron are also determined. The value of r2is 0.94 for site A and 0.73 for site B. The water quality results suggest that the nature of the monitor aquifer is anoxic in nature with low Eh, DO absent and low NO3- and SO4+. Major anion is HCO3- (376 mgL-1) followed by Cl- (28 mgL-1). However chloride concentration is largely varying in the monitored tube well. Microbial study (MPN & FC count) also indicates some relationship among MPN (r2-0.32) and Fe (r2 -0.24). However the relationship is scatter when As concentration is low. The linear trended has also obtained when both As, MPN and FC are high. The physical observation of plate count (Color reaction in Chromo colt Agar) has also been observed. This is a clear indicator of fecal coli form contamination. The study indicates that the microbial mobilization of As is the key factor for enrichment of As in ground water. The possible sources of the microbes are local land-use pattern (notable pit-latrine). Finally, the study highlights the role of coli forms bacteria (Both facultative and non-facultative) are wide spread in shallow rural aquifer of Bengal. Thus microbial process possibly enriches arsenic in shallow ground water.

FullText HTML FullText PDF DOI: 10.37871/jbres1168


Certificate of Publication




Copyright

© 2020 Ghosh P, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ghosh P, Das A, Majunder M, Mukherjee SK, Chatterjee D. Arsenic Mobilization Process in Shallow Aquifer of Bengal Delta Plain: A Field Scale Study to Identify the Role of Coliform Bacteria. J Biomed Res Environ Sci. 2020 Dec 05; 1(8): 372-382. doi: 10.37871/jbres1168, Article ID: jbres1168


Subject area(s)

References


  1. American Public Health Association (APHA). Standard Methods for the Analysis of Water and Wastewater, 17th ed. American Public Health Association, Washington, DC. 1998.
  2. Appelo CA, Van Der Weiden MJ, Tournassat C, Charlet L. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol. 2002 Jul 15;36(14):3096-103. doi: 10.1021/es010130n. PMID: 12141489.
  3. Bhattacharya P, Chatterjee D, Jacks G. Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, Eastern India: Options for safe drinking water supply. International Journal of Water Resources Development. 1997 Mar;13(1):79-92. doi: 10.1080/07900629749944.
  4. Bhattacharya P, Jacks G, Ahmed KM, Routh J, Khan AA. Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bull Environ Contam Toxicol. 2002 Oct;69(4):538-45. doi: 10.1007/s00128-002-0095-5. PMID: 12232725.
  5. Bhattacharyya R, Chatterjee D, Nath B, Jana J, Jacks G, Vahter M. High arsenic groundwater: Mobilization, metabolism and mitigation--an overview in the Bengal Delta Plain. Mol Cell Biochem. 2003 Nov;253(1-2):347-55. doi: 10.1023/a:1026001024578. PMID: 14619986.
  6. Bhattacharyya R, Jana J, Nath B, Sahu SJ, Chatterjee D, JacksG. Groundwater arsenic mobilization in the Bengal Delta Plain, the use of ferralite as a possible remedial measure-a case study. Applied Geochemistry. 2003 Sep; 18(9),1435-1451. doi: 10.1016/S0883-2927(03)00061-1.
  7. Bhowmick S, Nath B, Halder D, Biswas A, Majumder S, Mondal P, Chakraborty S, Nriagu J, Bhattacharya P, Iglesias M, Roman-Ross G, Guha Mazumder D, Bundschuh J, Chatterjee D. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences. J Hazard Mater. 2013 Nov 15;262:915-23. doi: 10.1016/j.jhazmat.2012.07.014. Epub 2012 Jul 11. PMID: 22999019.
  8. Biswas A, Gustafsson JP, Neidhardt H, Halder D, Kundu AK, Chatterjee D, Berner Z, Bhattacharya P. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res. 2014 May 15;55:30-9. doi: 10.1016/j.watres.2014.02.002. Epub 2014 Feb 11. PMID: 24583841.
  9. Biswas A, Nath B, Bhattacharya P, Halder D, Kundu AK, Mandal U, Mukherjee A, Chatterjee D, Mörth CM, Jacks G. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Sci Total Environ. 2012 Aug 1;431:402-12. doi: 10.1016/j.scitotenv.2012.05.031. Epub 2012 Jun 16. PMID: 22706147.
  10. Biswas A. Arsenic geochemistry in the alluvial aquifers of West Bengal, India: implications for targeting safe aquifers for sustainable drinking water supply (Doctoral dissertation, KTH Royal Institute of Technology). 2013.
  11. Biswas A, Majumder S, Neidhardt H, Halder D, Bhowmick S, Mukherjee GA, Kundu A, Saha D, Berner Z, Chatterjee D. Groundwater chemistry and redox processes: depth dependent arsenic release mechanism. Applied Geochemistry. 2011 Apr; 26(4),516-525.
  12. Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, Campbell K. Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol. 2010 Jan 1;44(1):15-23. doi: 10.1021/es9026248. PMID: 20000681.
  13. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature. 2004 Jul 1;430(6995):68-71. doi: 10.1038/nature02638. PMID: 15229598.
  14. Charlet L, Chakraborty S, Appelo CAJ, Roman RG, Nath, B, Ansari AA, Lanson M, Chatterjee D, Basu Mallik S. Chemodynamics of an As “hotspot” in a West Bengal aquifer: A field and reactive transport modeling study. Applied Geochemistry. 2007 Jul;22(7),1273-1292.
  15. Huq ME, Su C, Fahad S, Li J, Sarven MS, Liu R. Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh). Environ Sci Pollut Res Int. 2018 Jun;25(16):15830-15843. doi: 10.1007/s11356-018-1756-1. Epub 2018 Mar 26. PMID: 29582329.
  16. Christensen TH, BjergPL, Banwart SA, Jakobsen R, Heron G, Albrechtsen HJ. Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol. 2000 Oct;45(3):165-241. https://bit.ly/2JR5QEo
  17. Duxbury T, Bicknell B. Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem. 1983; 15, 243-250. https://bit.ly/3ov4EG1
  18. Fendorf S, Michael HA, van Geen A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science. 2010 May 28;328(5982):1123-7. doi: 10.1126/science.1172974. PMID: 20508123.
  19. Finney M, Smullen J, Foster HA, Brokx S, Storey DM. Evaluation of Chromocult coliform agar for the detection and enumeration of Enterobacteriaceae from faecal samples from healthy subjects. J Microbiol Methods. 2003 Sep;54(3):353-8. doi: 10.1016/s0167-7012(03)00068-x. PMID: 12842481.
  20. Harvey CF, Swartz CH, Badruzzaman AB, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF. Arsenic mobility and groundwater extraction in Bangladesh. Science. 2002 Nov 22;298(5598):1602-6. doi: 10.1126/science.1076978. PMID: 12446905.
  21. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-blute N, Winston YU, Ali MA, JAY J, Beckie R, Niedan V, Brabander D, Oates P, Ashfaque KN, Islam S, Hemond HF, Ahmed MF. Groundwater arsenic contamination on the Ganges Delta: Bbiogeochemistry, hydrology, human perturbations, and human suffering on a large scale. C.R. Geosci. 2005 Feb, 337(2), 285-296.
  22. Lawson M, Polya DA, Boyce AJ, Bryant C, Mondal D, Shantz A, Ballentine CJ. Pond-derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environ Sci Technol. 2013 Jul 2;47(13):7085-94. doi: 10.1021/es400114q. Epub 2013 Jun 20. PMID: 23755892.
  23. Leber J, Rahman MM, Ahmed KM, Mailloux B, van Geen A. Contrasting influence of geology on E. coli and arsenic in aquifers of Bangladesh. Ground Water. 2011 Jan-Feb;49(1):111-23. doi: 10.1111/j.1745-6584.2010.00689.x. PMID: 20236332.
  24. Mailloux BJ, Trembath-Reichert E, Cheung J, Watson M, Stute M, Freyer GA, Ferguson AS, Ahmed KM, Alam MJ, Buchholz BA, Thomas J, Layton AC, Zheng Y, Bostick BC, van Geen A. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proc Natl Acad Sci USA. 2013 Apr 2;110(14):5331-5. doi: 10.1073/pnas.1213141110. Epub 2013 Mar 4. PMID: 23487743; PMCID: PMC3619377.
  25. Majumder S, Datta S, Nath B, Neidhardt H, Sarkar S, Roman RG, Berner Z, Hidalgo M, Chatterjee D. Monsoonal influence on variation of hydrochemistry and isotopic signatures: Implications for associated arsenic release in groundwater Journal of Hydrology. 2016; 407-417. https://bit.ly/39LkzMm
  26. MC Arthur JM, Ravenscroft P, Banerjee DM, Milsom J, Hudson-Edwards KA, Sengupta S, Bristow C, Sarkar A, Tonkin S, Purohit R. How paleosols influence groundwater flow and arsenic pollution: A model from the Bengal Basin and its worldwide implication. Water Resour Res. 2008; 44: 1-30. https://bit.ly/3oprRcv
  27. Michael HA, Voss CI. Estimation of regional-scale groundwater flow properties in theBengal Basin of India and Bangladesh. Hydrogeol J. 2009; 17: 1329-1346. https://bit.ly/2La2Xzn
  28. Nath B, Sahu SJ, Jana J, Mukherjee GA, Roy S, Sarkar MJ, Chatterjee D. Hydrochemistry of arsenic-enriched aquifer from rural West Bengal, India: A study of the arsenic exposure and mitigation option. Water Air Soil Pollut. 2007 May; 190(1):95-113. doi: 10.1007/s11270-007-9583-x.
  29. Nath B, Stuben D, Basu Mallik S, Chatterjee D, Charlet L. Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry. 2008 May; 23(5):977-995.
  30. National Research Council (NRC). Arsenic in drinking water. National Academy of Sciences, Washington DC. 2001.
  31. Chakraborty M, Sarkar S, Mukherjee A, Shamsudduha M, Ahmed KM, Bhattacharya A, Mitra A. Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Sci Total Environ. 2020 Dec 15;748:141107. doi: 10.1016/j.scitotenv.2020.141107. Epub 2020 Jul 25. PMID: 33113690.
  32. Neumann RB, Ashfaque KN, Badruzzaman ABM, Ali AM, Shoemaker JK, Harvey CF. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience. 2009 Nov;3(1),46-52. doi:10.1038/ngeo685.
  33. Oremland RS, Stolz JF. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 2005 Feb;13(2):45-9. doi: 10.1016/j.tim.2004.12.002. PMID: 15680760.
  34. Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature. 2008 Jul 24;454(7203):505-8. doi: 10.1038/nature07093. PMID: 18650922.
  35. Radloff KA, Cheng Z, Rahman MW, Ahmed KM, Mailloux BJ, Juhl AR, Schlosser P, Van Geen A. Mobilization of arsenic during one-year incubations of grey aquifer sands from Araihazar, Bangladesh. Environ Sci Technol. 2007 May 15;41(10):3639-45. doi: 10.1021/es062903j. PMID: 17547190; PMCID: PMC2577162.
  36. Ravenscroft PMC, Arthur JM, Hoque BA. Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. Arsenic Exposure and Health Effects IV. 2001 Jan;53-78.
  37. Reimann C, Matschullat J, Birke M, Salminen R. Arsenic distribution in the environment: The effects of scale. Applied Geochemistry. 2009 Jul;24(7), 1147-1167.
  38. Sengupta S, McArthur JM, Sarkar A, Leng MJ, Ravenscroft P, Howarth RJ, Banerjee DM. Do ponds cause arsenic-pollution of groundwater in the Bengal basin? An answer from West Bengal. Environ Sci Technol. 2008 Jul 15;42(14):5156-64. doi: 10.1021/es702988m. PMID: 18754363.
  39. Smedley PL, Kinniburgh DG. A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem. 2002 May;17(5):517-568.
  40. Valenzuela M, Lagos B, Claret M, Mondaca MA, Pérez C, Parra O. Fecal Contamination of Groundwater in a Small Rural Dryland Watershed in Central Chile. Chilean Journal of Agricultural Research. 2009 Apr;69(2):235-243. doi:10.4067/s0718-58392009000200013.
  41. Van GA, Ahmed KM, Akita Y, Alam MJ, Culligan PJ, Emch M, Yunus M. Fecal Contamination of Shallow Tubewells in Bangladesh Inversely Related to Arsenic. Environmental Science & Technology. 2011 Jan;45(4):1199-1205. doi:10.1021/es103192b.
  42. van Geen A, Radloff K, Aziz Z, Cheng Z, Huq MR, Ahmed KM, Weinman B, Goodbred S, Jung HB, Zheng Y, Berg M, Trang PT, Charlet L, Metral J, Tisserand D, Guillot S, Chakraborty S, Gajurel AP, Upreti BN. Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal. Appl Geochem. 2008 Nov;23(11):3019-3028. doi: 10.1016/j.apgeochem.2008.07.005. PMID: 19884967; PMCID: PMC2630228.
  43. WHO. Guidelines for Drinking-water Quality, 3rd edition. World Health Organization, Geneva, Switzerland. 2004.
  44. WHO. Guidelines for Drinking-water Quality. 4th edition. World Health Organization, Geneva. 2011.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search