Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 8701512972

Sex and Age Differences in Telomere Length and Susceptibility to COVID-19

Biology Group    Start Submission

Manar Ahmed Kamal*, Kareem Reda Alamiry and Mahmoud Zaki

Volume1-Issue7
Dates: Received: 2020-10-09 | Accepted: 2020-11-11 | Published: 2020-11-12
Pages: 303-310

Abstract

Background: Telomeres are the ends of a chromosome and play a fundamental role as vanguards contra the chromosomal decay. Due to the inability of DNA polymerase to replicate chromosomal ends, a reduction in telomeres length happens after each cell division. The existence of shorter telomeres in older people is related to diminish immune functions. Viral infections able to stimulate remodeling of cells, stress responses, and telomere shortening. Moreover, telomere shortening can be caused by extrinsic environmental variables which induce oxidative stress under conditions of inflammation.

Aim: To identify the correlation between telomere shortening and susceptibility to Novel Coronavirus Disease 2019 (COVID-19). In addition to clarifying changes in telomere length according to the viral infection, the effect of sex and age differences in telomere length in confirmed positive COVID-19 cases are also reviewed.

Conclusion: There is a correlation between telomere length and COVID-19 infection with higher susceptibly of elderly patients and males due to shortening in their telomere length. Approximately 53% of (111,428) infected cases (≥ 50) years old are males, and 47% of (111,428) infected cases (≥ 50) years old are females.

FullText HTML FullText PDF DOI: 10.37871/jbres1159


Certificate of Publication




Copyright

© 2020 Kamal MA, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Kamal MA, Alamiry KR, Zaki M. Sex and Age Differences in Telomere Length and Susceptibility to COVID-19. J Biomed Res Environ Sci. 2020 Nov 12; 1(7): 303-310. doi: 10.37871/jbres1159, Article ID: jbres1159


Subject area(s)

References


  1. Mandeh M, Omidi M, Maali Amiri R. Telomere: Characteristics and Functions. Genet 3rd Millenn. 2009;7(1):1589-1596 https://bit.ly/3pgMzN5.
  2. Artandi SE. Telomeres, telomerase, and human disease. N Engl J Med. 2006 Sep 21;355(12):1195-7. doi: 10.1056/NEJMp068187. PMID: 16990382.
  3. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007 Oct;3(10):640-9. doi: 10.1038/nchembio.2007.38. PMID: 17876321.
  4. Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007 Apr 10;96(7):1020-4. doi: 10.1038/sj.bjc.6603671. Epub 2007 Mar 13. PMID: 17353922; PMCID: PMC2360127.
  5. Ilmonen P, Kotrschal A, Penn DJ. Telomere attrition due to infection. PLoS One. 2008 May 14;3(5):e2143. doi: 10.1371/journal.pone.0002143. PMID: 18478110; PMCID: PMC2366059.
  6. Douglas D. Richman, Richard J. Whitley FGH. Clinicalvirology - Fourth Edition [Internet]. ASM Press. Elsevier; 2017. 474-478 p. https://bit.ly/32AKP7x
  7. Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020 Mar 15;16(10):1686-1697. doi: 10.7150/ijbs.45472. PMID: 32226286; PMCID: PMC7098031.
  8. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Who [Internet]. 2020 Feb:16–24. https://bit.ly/3loqAkM
  9. Das B, Saini D, Seshadri M. Telomere length in human adults and high level natural background radiation. PLoS One. 2009 Dec 23;4(12):e8440. doi: 10.1371/journal.pone.0008440. PMID: 20037654; PMCID: PMC2793520.
  10. Kudryashova KS, Burka K, Kulaga AY, Vorobyeva NS, Kennedy BK. Aging Biomarkers: From Functional Tests to Multi-Omics Approaches. Proteomics. 2020 Mar;20(5-6):e1900408. doi: 10.1002/pmic.201900408. Epub 2020 Mar 11. PMID: 32084299.
  11. Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010 May;11(5):319-30. doi: 10.1038/nrg2763. Epub 2010 Mar 30. PMID: 20351727.
  12. Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M, Skurnick J, Awad G, Aviv A. Telomere length in the newborn. Pediatr Res. 2002 Sep;52(3):377-81. doi: 10.1203/00006450-200209000-00012. PMID: 12193671.
  13. Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, Martin-Ruiz C, Shiels P, Sayer AA, Barbieri M, Bekaert S, Bischoff C, Brooks-Wilson A, Chen W, Cooper C, Christensen K, De Meyer T, Deary I, Der G, Diez Roux A, Fitzpatrick A, Hajat A, Halaschek-Wiener J, Harris S, Hunt SC, Jagger C, Jeon HS, Kaplan R, Kimura M, Lansdorp P, Li C, Maeda T, Mangino M, Nawrot TS, Nilsson P, Nordfjall K, Paolisso G, Ren F, Riabowol K, Robertson T, Roos G, Staessen JA, Spector T, Tang N, Unryn B, van der Harst P, Woo J, Xing C, Yadegarfar ME, Park JY, Young N, Kuh D, von Zglinicki T, Ben-Shlomo Y; Halcyon study team. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. 2014 Mar;51:15-27. doi: 10.1016/j.exger.2013.12.004. Epub 2013 Dec 21. PMID: 24365661; PMCID: PMC4523138.
  14. Mayer S, Brüderlein S, Perner S, Waibel I, Holdenried A, Ciloglu N, Hasel C, Mattfeldt T, Nielsen KV, Möller P. Sex-specific telomere length profiles and age-dependent erosion dynamics of individual chromosome arms in humans. Cytogenet Genome Res. 2006;112(3-4):194-201. doi: 10.1159/000089870. PMID: 16484772.
  15. Nawrot TS, Staessen JA, Gardner JP, Aviv A. Telomere length and possible link to X chromosome. Lancet. 2004 Feb 14;363(9408):507-10. doi: 10.1016/S0140-6736(04)15535-9. PMID: 14975611.
  16. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002 Jul;27(7):339-44. doi: 10.1016/s0968-0004(02)02110-2. PMID: 12114022.
  17. Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8(5):e1002696. doi: 10.1371/journal.pgen.1002696. Epub 2012 May 17. PMID: 22661914; PMCID: PMC3355073.
  18. Shiels PG. Improving precision in investigating aging: why telomeres can cause problems. J Gerontol A Biol Sci Med Sci. 2010 Aug;65(8):789-91. doi: 10.1093/gerona/glq095. Epub 2010 Jun 10. PMID: 20538902.
  19. Shiels PG, McGlynn LM, MacIntyre A, Johnson PC, Batty GD, Burns H, Cavanagh J, Deans KA, Ford I, McConnachie A, McGinty A, McLean JS, Millar K, Sattar N, Tannahill C, Velupillai YN, Packard CJ. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One. 2011;6(7):e22521. doi: 10.1371/journal.pone.0022521. Epub 2011 Jul 27. PMID: 21818333; PMCID: PMC3144896.
  20. Steffens JP, Masi S, D’Aiuto F, Spolidorio LC. Telomere length and its relationship with chronic diseases - new perspectives for periodontal research. Arch Oral Biol. 2013 Feb;58(2):111-7. doi: 10.1016/j.archoralbio.2012.09.009. Epub 2012 Nov 30. PMID: 23201158.
  21. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003 Feb 1;361(9355):393-5. doi: 10.1016/S0140-6736(03)12384-7. PMID: 12573379.
  22. Unryn BM, Cook LS, Riabowol KT. Paternal age is positively linked to telomere length of children. Aging Cell. 2005 Apr;4(2):97-101. doi: 10.1111/j.1474-9728.2005.00144.x. PMID: 15771613.
  23. Soerensen M, Thinggaard M, Nygaard M, Dato S, Tan Q, Hjelmborg J, Andersen-Ranberg K, Stevnsner T, Bohr VA, Kimura M, Aviv A, Christensen K, Christiansen L. Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross-sectional and longitudinal analysis. Aging Cell. 2012 Apr;11(2):223-7. doi: 10.1111/j.1474-9726.2011.00775.x. Epub 2011 Dec 28. PMID: 22136229; PMCID: PMC3303949.
  24. Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, Zou Y, Beversdorf DQ, Weng NP. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol. 2007 Sep 15;179(6):4249-54. doi: 10.4049/jimmunol.179.6.4249. PMID: 17785865; PMCID: PMC2262924.
  25. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5. doi: 10.1073/pnas.0407162101. Epub 2004 Dec 1. PMID: 15574496; PMCID: PMC534658.
  26. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, Wolkowitz O, Mellon S, Blackburn E. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods. 2010 Jan 31;352(1-2):71-80. doi: 10.1016/j.jim.2009.09.012. Epub 2009 Oct 21. PMID: 19837074; PMCID: PMC3280689.
  27. Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35(1):112-31. doi: 10.1093/epirev/mxs008. Epub 2013 Jan 9. PMID: 23302541; PMCID: PMC4707879.
  28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7. Epub 2020 Feb 3. PMID: 32015507; PMCID: PMC7095418.
  29. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24. PMID: 31978945; PMCID: PMC7092803.
  30. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 30;: PMID: 31986264; PMCID: PMC7159299.
  31. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 10;41(2):145-151. Chinese. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003. PMID: 32064853.
  32. Korean Centers for Disease Control and Prevention. The updates on COVID-19 in Korea as of 9 March. 2020;4–11.
  33. Toyo Keizai. Patients profile of coronavirus disease (COVID-19) cases in Japan as of March 22, 2020, by age group and gender. 2020;(March). https://bit.ly/35hLhJy
  34. Department of Health website. Confirmed cases by age group: COVID-19 Cases: Philippines, as of April 2, 2020 Department of Health website. 2020; https://bit.ly/2Uk6ImU
  35. National Institute for Health and Welfare. Number of coronavirus (COVID-19) cases in Finland as of April 2, 2020, by gender. 2020;(April):1107748. https://bit.ly/38yt0tE
  36. Welfare NI for H and. Number of COVID-19 cases in Finland April 2020, by age group Number of coronavirus (COVID-19) cases in Finland as of April 2, 2020, by age group. 2020;(April):1103926. https://bit.ly/38yMvlY
  37. Needs E, March PDF. California is issuing daily updates on COVID-19-March 19, 2020. 2020;1–10. https://bit.ly/3kl5dzx
  38. Istituto Superiore di Sanità. Sorveglianza Integrata COVID-19 in Italia. 2020;11857:1–1. https://bit.ly/2UfPNlx
  39. Sas A. Coronavirus (COVID-19) new cases in Czechia 2020, by age and gender Number of new coronavirus (COVID - 19) cases confirmed in Czechia in 2020, by age and gender. 2020;1-2. https://bit.ly/3kle9Fl
  40. Sas A. Coronavirus (COVID-19) new cases in Estonia 2020, by age and gender Number of new coronavirus (COVID-19) cases confirmed in Estonia in 2020, by age and gender. 2020;1-2. https://bit.ly/36ojB5k
  41. Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 2005 Feb 7;579(4):859-62. doi: 10.1016/j.febslet.2004.11.036. PMID: 15680963.
  42. Cech TR. Beginning to understand the end of the chromosome. Cell. 2004 Jan 23;116(2):273-9. doi: 10.1016/s0092-8674(04)00038-8. PMID: 14744437.
  43. Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet. 2015 Apr 14;6:143. doi: 10.3389/fgene.2015.00143. PMID: 25926849; PMCID: PMC4396414.
  44. Azzalin CM, Lingner J. Telomere functions grounding on TERRA firma. Trends Cell Biol. 2015 Jan;25(1):29-36. doi: 10.1016/j.tcb.2014.08.007. Epub 2014 Sep 23. PMID: 25257515.
  45. Luke B, Lingner J. TERRA: telomeric repeat-containing RNA. EMBO J. 2009 Sep 2;28(17):2503-10. doi: 10.1038/emboj.2009.166. Epub 2009 Jul 23. PMID: 19629047; PMCID: PMC2722245.
  46. Diman A, Boros J, Poulain F, Rodriguez J, Purnelle M, Episkopou H, Bertrand L, Francaux M, Deldicque L, Decottignies A. Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Sci Adv. 2016 Jul 27;2(7):e1600031. doi: 10.1126/sciadv.1600031. PMID: 27819056; PMCID: PMC5087959.
  47. Weitzman MD, Weitzman JB. What’s the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe. 2014 Mar 12;15(3):283-94. doi: 10.1016/j.chom.2014.02.010. PMID: 24629335; PMCID: PMC4501477.
  48. de Jong RN, van der Vliet PC, Brenkman AB. Adenovirus DNA replication: protein priming, jumping back and the role of the DNA binding protein DBP. Curr Top Microbiol Immunol. 2003;272:187-211. doi: 10.1007/978-3-662-05597-7_7. PMID: 12747551.
  49. Deng Z, Kim ET, Vladimirova O, Dheekollu J, Wang Z, Newhart A, Liu D, Myers JL, Hensley SE, Moffat J, Janicki SM, Fraser NW, Knipe DM, Weitzman MD, Lieberman PM. HSV-1 remodels host telomeres to facilitate viral replication. Cell Rep. 2014 Dec 24;9(6):2263-78. doi: 10.1016/j.celrep.2014.11.019. Epub 2014 Dec 11. PMID: 25497088; PMCID: PMC4356630.
  50. Caslini C, Connelly JA, Serna A, Broccoli D, Hess JL. MLL associates with telomeres and regulates telomeric repeat-containing RNA transcription. Mol Cell Biol. 2009 Aug;29(16):4519-26. doi: 10.1128/MCB.00195-09. Epub 2009 Jun 15. PMID: 19528237; PMCID: PMC2725733.
  51. Su D, Wang X, Campbell MR, Song L, Safi A, Crawford GE, Bell DA. Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation. PLoS Genet. 2015 Jan 8;11(1):e1004885. doi: 10.1371/journal.pgen.1004885. PMID: 25569532; PMCID: PMC4287438.
  52. Wang Z, Lieberman PM. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol. 2016 Aug 2;13(8):690-5. doi: 10.1080/15476286.2016.1203503. Epub 2016 Jun 28. PMID: 27351774; PMCID: PMC4993293.
  53. Cohen S, Janicki-Deverts D, Turner RB, Casselbrant ML, Li-Korotky HS, Epel ES, Doyle WJ. Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA. 2013 Feb 20;309(7):699-705. doi: 10.1001/jama.2013.613. PMID: 23423415; PMCID: PMC3786437.
  54. Liu L. Fields Virology, 6th Edition. Clin Infect Dis [Internet]. 2014 May 7;59(4):613. https://bit.ly/3ncl7hr
  55. Kumar CS, Dey D, Ghosh S, Banerjee M. Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol. 2018 Jun;26(6):525-537. doi: 10.1016/j.tim.2017.09.010. Epub 2017 Oct 25. PMID: 29079499.
  56. During I, Infection V. Inflammation During Virus Infection: Swings and Roundabouts. 43–59. https://bit.ly/38wdRZO
  57. Guan Y, Peiris JS, Zheng B, Poon LL, Chan KH, Zeng FY, Chan CW, Chan MN, Chen JD, Chow KY, Hon CC, Hui KH, Li J, Li VY, Wang Y, Leung SW, Yuen KY, Leung FC. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet. 2004 Jan 10;363(9403):99-104. doi: 10.1016/s0140-6736(03)15259-2. PMID: 14726162; PMCID: PMC7112497.
  58. Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J Med. 2003 Dec 18;349(25):2431-41. doi: 10.1056/NEJMra032498. PMID: 14681510.
  59. Lew TW, Kwek TK, Tai D, Earnest A, Loo S, Singh K, Kwan KM, Chan Y, Yim CF, Bek SL, Kor AC, Yap WS, Chelliah YR, Lai YC, Goh SK. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003 Jul 16;290(3):374-80. doi: 10.1001/jama.290.3.374. PMID: 12865379.
  60. Farcas GA, Poutanen SM, Mazzulli T, Willey BM, Butany J, Asa SL, Faure P, Akhavan P, Low DE, Kain KC. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J Infect Dis. 2005 Jan 15;191(2):193-7. doi: 10.1086/426870. Epub 2004 Dec 10. PMID: 15609228; PMCID: PMC7109982.
  61. Liu S, Wang C, Green G, Zhuo H, Liu KD, Kangelaris KN, Gomez A, Jauregui A, Vessel K, Ke S, Hendrickson C, Matthay MA, Calfee CS, Ware LB, Wolters PJ. Peripheral blood leukocyte telomere length is associated with survival of sepsis patients. Eur Respir J. 2020 Jan 16;55(1):1901044. doi: 10.1183/13993003.01044-2019. PMID: 31619475; PMCID: PMC7359873.
  62. Albrecht E, Sillanpää E, Karrasch S, Alves AC, Codd V, Hovatta I, Buxton JL, Nelson CP, Broer L, Hägg S, Mangino M, Willemsen G, Surakka I, Ferreira MA, Amin N, Oostra BA, Bäckmand HM, Peltonen M, Sarna S, Rantanen T, Sipilä S, Korhonen T, Madden PA, Gieger C, Jörres RA, Heinrich J, Behr J, Huber RM, Peters A, Strauch K, Wichmann HE, Waldenberger M, Blakemore AI, de Geus EJ, Nyholt DR, Henders AK, Piirilä PL, Rissanen A, Magnusson PK, Viñuela A, Pietiläinen KH, Martin NG, Pedersen NL, Boomsma DI, Spector TD, van Duijn CM, Kaprio J, Samani NJ, Jarvelin MR, Schulz H. Telomere length in circulating leukocytes is associated with lung function and disease. Eur Respir J. 2014 Apr;43(4):983-92. doi: 10.1183/09031936.00046213. Epub 2013 Dec 5. PMID: 24311771.
  63. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006 Feb 24;124(4):783-801. doi: 10.1016/j.cell.2006.02.015. PMID: 16497588.
  64. Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol. 2012 Mar;86(6):2900-10. doi: 10.1128/JVI.05738-11. Epub 2012 Jan 18. PMID: 22258243; PMCID: PMC3302314.
  65. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004 Mar 5;303(5663):1526-9. doi: 10.1126/science.1093620. Epub 2004 Feb 19. PMID: 14976262.
  66. Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011 May 27;34(5):680-92. doi: 10.1016/j.immuni.2011.05.003. PMID: 21616437; PMCID: PMC3177755.
  67. Amaral G, Bushee J, Cordani UG, KAWASHITA K, Reynolds JH, ALMEIDA FFMDE, et al. FosL1 determines the differential signaling by TLR7 and TLR8 during RNA virus infection. J Petrol [Internet]. 2013;369(1):1689–99. https://bit.ly/2Imuhce
  68. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C, Jais JP, D’Cruz D, Casanova JL, Trouillet C, Geissmann F. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010 Sep 24;33(3):375-86. doi: 10.1016/j.immuni.2010.08.012. Epub 2010 Sep 9. PMID: 20832340; PMCID: PMC3063338.
  69. Chan SRWL, Blackburn EH. Telomeres and telomerase. Philos Trans R Soc B Biol Sci. 2004;359(1441):109–21. https://bit.ly/2Un1C9v
  70. Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev. 2017 Jun;164:61-66. doi: 10.1016/j.mad.2017.04.004. Epub 2017 Apr 18. PMID: 28431907.
  71. Aviv A, Valdes A, Gardner JP, Swaminathan R, Kimura M, Spector TD. Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation. J Clin Endocrinol Metab. 2006 Feb;91(2):635-40. doi: 10.1210/jc.2005-1814. Epub 2005 Nov 22. PMID: 16303830.
  72. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999 Feb 15;7(2):169-77. doi: 10.1016/S0969-2126(99)80023-9. PMID: 10368284.
  73. C-reactive protein (CRP). 2020;5224:9635. https://bit.ly/3pfnWAi
  74. Sara M Nehring, Amandeep Goyal, Pankaj Bansal, Bhupendra C Patel. Reactive Protein (CRP). Sem des Hop [Internet]. 1989;65(5):237–44. https://bit.ly/3n5WgMq
  75. Jeon J-S, Rheem I, Kim JK. C - reactive protein and Respiratory Viral Infection. Korean J Clin Lab Sci. 2017;49(1):15–21. https://bit.ly/38yWkQW
  76. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):1–31. https://bit.ly/3eULNjZ
  77. Justiz Vaillant AA QA. Interleukin. 2020;1:1–8. https://bit.ly/2GQFx0b
  78. Chang AM, Oakland M. Biomarkers in Shortness of Breath. In: Biomarkers in Cardiovascular Disease [Internet]. Elsevier; 2019. p. 129–37. https://bit.ly/2IojvSX
  79. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014 Sep 4;6(10):a016295. doi: 10.1101/cshperspect.a016295. PMID: 25190079; PMCID: PMC4176007.
  80. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8 Suppl 2(Suppl 2):S3. doi: 10.1186/ar1917. Epub 2006 Jul 28. PMID: 16899107; PMCID: PMC3226076.
  81. Carrero JJ, Stenvinkel P, Fellström B, Qureshi AR, Lamb K, Heimbürger O, Bárány P, Radhakrishnan K, Lindholm B, Soveri I, Nordfors L, Shiels PG. Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J Intern Med. 2008 Mar;263(3):302-12. doi: 10.1111/j.1365-2796.2007.01890.x. Epub 2007 Dec 7. PMID: 18070000.
  82. Xu D, Erickson S, Szeps M, Gruber A, Sangfelt O, Einhorn S, Pisa P, Grandér D. Interferon alpha down-regulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells. Blood. 2000 Dec 15;96(13):4313-8. PMID: 11110707.
  83. Chung SS, Wu Y, Okobi Q, Adekoya D, Atefi M, Clarke O, Dutta P, Vadgama JV. Proinflammatory Cytokines IL-6 and TNF-α Increased Telomerase Activity through NF-κB/STAT1/STAT3 Activation, and Withaferin A Inhibited the Signaling in Colorectal Cancer Cells. Mediators Inflamm. 2017;5958429. doi: 10.1155/2017/5958429. Epub 2017 Jun 6. PMID: 28676732; PMCID: PMC5476880.
  84. Akiyama M, Hideshima T, Hayashi T, Tai YT, Mitsiades CS, Mitsiades N, Chauhan D, Richardson P, Munshi NC, Anderson KC. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res. 2002 Jul 1;62(13):3876-82. PMID: 12097303.
  85. Kordinas V, Ioannidis A, Chatzipanagiotou S. The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect? Genes (Basel). 2016 Sep 3;7(9):60. doi: 10.3390/genes7090060. PMID: 27598205; PMCID: PMC5042391.
  86. Ahmed W, Lingner J. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes Dev. 2018 May 1;32(9-10):658-669. doi: 10.1101/gad.313460.118. Epub 2018 May 17. PMID: 29773556; PMCID: PMC6004070.
  87. Aeby E, Ahmed W, Redon S, Simanis V, Lingner J. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase. Cell Rep. 2016 Dec 20;17(12):3107-3114. doi: 10.1016/j.celrep.2016.11.071. PMID: 28009281.
  88. Fouquerel E, Lormand J, Bose A, Lee HT, Kim GS, Li J, Sobol RW, Freudenthal BD, Myong S, Opresko PL. Oxidative guanine base damage regulates human telomerase activity. Nat Struct Mol Biol. 2016 Dec;23(12):1092-1100. doi: 10.1038/nsmb.3319. Epub 2016 Nov 7. PMID: 27820808; PMCID: PMC5140714.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search