Covid-19 Research

In vitro Cytotoxicity Studies of Industrially Used Common Nanomaterials on L929 and 3T3 Fibroblast Cells

Start Submission

Abstract

The unique structures and properties of nanomaterials have attracted many engineers and scientists to these resources for different applications, including biomedical, electronics, manufacturing, transportation, energy, and defense. The increasing applications of nanomaterials have also caused some concern among the scientific community about their safety and cytotoxicity. To successfully use nanomaterials in different fields, their interaction with mammalian cells in vitro must be addressed before in vivo experiments can be carried out successfully. In this study, the cytotoxicity values of commonly known nanomaterials, such as 100-ply Carbon Nanotube (CNT) wires, graphene, CNTs, nanoclay, and fullerene, were investigated through in vitro tests on human L929 and mice 3T3 fibroblast cells and compared with each other. The effects of cytotoxicity on both cell types were similar in many ways, but not closely identical due to structural and morphological differences. Compared to mice fibroblast cells, human fibroblast cells have a larger surface area; therefore, the viability values of L929 cells at different dilutions and time durations vary over a larger range. Pristine 100-ply CNT wires were found to be the least cytotoxic, with an average viability of 86.9%, whereas materials with high aspect ratio (e.g., CNTs and graphene) had higher cytotoxicity values due to their potential to pierce through cell membranes.

Madhulika Srikanth, Waseem S. Khan, Ramazan Asmatulu, Heath E. Misak, Shang-You Yang and Eylem Asmatulu*
,,
Volume1-Issue5 | Published: 2020-09-30

FullText HTML FullText PDF

References


  1. Asmatulu R, Khan WS. Synthesis and Applications of Electrospun Nanofibers. Elsevier: Amsterdam; 2018. https://bit.ly/3kZSpiL
  2. Groneberg DA, Giersig M, Welte T, Pison U. Nanoparticle-based diagnosis and therapy. Curr Drug Targets. 2006 Jun;7(6):643-8. doi: 10.2174/138945006777435245. PMID: 16787165.
  3. Jeong SC, Lee DH, Lee JS. Production and characterization of an anti-angiogenic agent from saccharomyces cerevisiae K-7. Journal of Microbiology and Biotechnology. 2006; 16(12):1904-1911. https://bit.ly/2Gcb8cf
  4. Asmatulu R. Nanotechnology Safety, Elsevier, Amsterdam; August 2013. https://bit.ly/3jjbCvr
  5. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett. 2006 Feb 20;161(2):115-23. doi: 10.1016/j.toxlet.2005.08.007. Epub 2005 Sep 13. PMID: 16165331.
  6. Yin H, Too HP, Chow GM. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials. 2005 Oct;26(29):5818-26. doi: 10.1016/j.biomaterials.2005.02.036. Epub 2005 Apr 15. PMID: 15949547.
  7. Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles. Int J Mol Sci. 2015 Oct 15;16(10):24417-50. doi: 10.3390/ijms161024417. PMID: 26501258; PMCID: PMC4632758.
  8. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst. 2005 Jul;1(2):176-82. doi: 10.1039/b502429c. Epub 2005 Apr 20. PMID: 16880981.
  9. Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010 Oct 26;4(10):5731-6. doi: 10.1021/nn101390x. PMID: 20925398.
  10. Srikanth M, In Vitro Cytotoxicity Tests of Nanomaterials on 3T3 and L929 Cells. M.S. Thesis, Wichita State University. May 2012. https://bit.ly/3n3Ilau
  11. Liao KH, Lin YS, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces. 2011 Jul;3(7):2607-15. doi: 10.1021/am200428v. Epub 2011 Jun 30. PMID: 21650218.
  12. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006 Jan 5;160(2):121-6. doi: 10.1016/j.toxlet.2005.06.020. Epub 2005 Aug 25. PMID: 16125885.
  13. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005 Mar 1;39(5):1378-83. doi: 10.1021/es048729l. PMID: 15787380.
  14. Misak HE, Asmatulu R, Gopu JS, Man KP, Zacharias NM, Wooley PH, Yang SY. Albumin-based nanocomposite spheres for advanced drug delivery systems. Biotechnol J. 2014 Jan;9(1):163-70. doi: 10.1002/biot.201300150. PMID: 24106002.
  15. Partha R, Mitchell LR, Lyon JL, Joshi PP, Conyers JL. Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery. ACS Nano. 2008 Sep 23;2(9):1950-8. doi: 10.1021/nn800422k. PMID: 19206436.
  16. Asmatulu R. Toxicity of Nanomaterials and Recent Developments in Lung Disease. Chapter 6 in Bronchitis. In Tec, ed. P. Zobic; 2011. p. 95-108. https://bit.ly/3ihWcX9
  17. Asmatulu R, Asmatulu E, Yourdkhani A. Toxicity of Nanomaterials and Recent Developments in the Protection Methods. SAMPE Fall Technical Conference, Wichita, KS; October 19-22, 2009. p. 12. https://bit.ly/3n7nJOm
  18. Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB. Active defense under oxidative stress. The antioxidant responsive element. Biochemistry (Mosc). 2006 Sep;71(9):962-74. doi: 10.1134/s0006297906090033. PMID: 17009949.
  19. Asmatulu R, Asmatulu E, Yourdkhani A. Toxicity of Nanomaterials and Recent Developments in Protection Methods. Proceedings of the Midwest Section Conference of the American Society for Engineering Education, Lawrence KS; 2010. p. 22-24. https://bit.ly/3n7nJO
  20. N. Nuraje, R. Asmatulu, and G. Mul. Green Photo-Active Nanomaterials: Sustainable Energy and Environmental Remediation. RSC Publishing: Cambridge, England; November 2015. https://rsc.li/3ieoP7C
  21. Karakoti S, Hench LL, Seal S. The potential toxicity of nanomaterials-the role of surfaces. JOM. 2006;58:77-82. https://bit.ly/2ELQe33
  22. N. O’Brien and E. Cummins. Nanomaterials: Risks and Benefits. Springer: The Netherlands; 2008. p. 161-178.
  23. Asmatulu R, Garikapati A, Misak HE, Song Z, Yang SY, Wooley PH. “Cytotoxicity of magnetic nanocomposite spheres for possible drug delivery systems,” ASME International Mechanical Engineering Congress and Exposition. 2012;911-918. doi: 10.1115/IMECE2010-40269
  24. Sanhes L, Tang R, Delmer A, DeCaprio JA, Ajchenbaum-Cymbalista F. Fludarabine-induced apoptosis of B chronic lymphocytic leukemia cells includes early cleavage of p27kip1 by caspases. Leukemia. 2003 Jun;17(6):1104-11. doi: 10.1038/sj.leu.2402895. PMID: 12764376.
  25. Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12295-300. doi: 10.1073/pnas.1222276110. Epub 2013 Jul 9. PMID: 23840061; PMCID: PMC3725082.
  26. Wang Y, Ma X, Wang J, Cheng S, Ren Q, Zhan W, Wang Y. Effects of Mercapto-functionalized Nanosilica on Cd Stabilization and Uptake by Wheat Seedling (Triticum aestivum L.) in an Agricultural Soil. Bull Environ Contam Toxicol. 2019 Dec;103(6):860-864. doi: 10.1007/s00128-019-02729-4. Epub 2019 Oct 11. PMID: 31605159.
  27. Imai K, Watari F, Nishikawa T, Tataka A, Tanoue A. “An attempt to study of the C60 Fullerence on differentiation of mouse ES cells” J-STaGE/ Nano Biomedicine. 2011;3(2):288-293. doi: 10.11344/nano.3.288
  28. Sakai A, Yamakoshi Y, Miyata N. Visible light irradiation of [60] fullerene causes killing and initiation of transformation in Balb/3T3 cells. Journal of Fullerenes Science and Technology. 1999;7(5):743-756. doi: 10.1080/10641229909351375
  29. Uscátegui YL, Arévalo FR, Díaz LE, Cobo MI, Valero MF. Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J Biomater Sci Polym Ed. 2016 Dec;27(18):1860-1879. doi: 10.1080/09205063.2016.1239948. Epub 2016 Oct 11. PMID: 27654066.
  30. Banerjee SL, Swift T, Hoskins R, Rimmer S, Singha NK. A muscle mimetic polyelectrolyte-nanoclay organic-inorganic hybrid hydrogel: its self-healing, shape-memory and actuation properties. J Mater Chem B. 2019 Mar 7;7(9):1475-1493. doi: 10.1039/c8tb02852d. Epub 2019 Feb 11. PMID: 32255019.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • zenodo
  • openaire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • FIT
  • CrossRef
  • LUBsearch
  • BIUSante
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search

 

 

COVID-19 alert