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Abstract
Introduction: The COVID-19 pandemic, an urgent global public health emergency, has resulted 

in millions of confi rmed cases and deaths. Global healthcare systems face signifi cant strain as 
facilities struggle to manage hospital capacities amid supply shortages. RdRp functions as the 
essential enzyme for viral replication through respiratory particles. The Food and Drug Administration 
recognizes Remdesivir as the only approved drug for COVID-19, yet scientists continue to explore 
additional treatment options.

Methods: The research implemented Glide docking software to perform Standard Precision 
(SP) and Extra Precision (XP) simulations. The docking grid maintained default parameters for the 
IFD method, which focused on accommodating different receptor conformations targeting RNA-
dependent RNA polymerase's binding pocket. Molecular Quantum Similarity Measure (MQSM) 
performed Quantum similarity analyses through ZAB quantitative measures that evaluated molecules 
based on their Density Function (DFs). The molecular quantum similarity (MQS) calculation required 
two operators: the Dirac delta function and the Coulomb operator. The chemical reactivity analysis 
involved determining four primary indices, namely chemical potential (μ), hardness (η), softness 
(S) and electrophilicity (ɷ), to assess ligand stability and electrophilic characteristics alongside 
reactivity. Fukui functions revealed local chemical reactivity sites of the ligands to provide complete 
information about their reaction patterns.

Results: The molecular docking analysis showed that ligands formed important bonds with 
particular residues inside the binding pocket through hydrogen bonds to GLU166 and CYS145. 
The protein residues develop essential binding interactions that stabilize ligands. The chemical 
reactivity assessments revealed global reactivity parameters such as each ligand's chemical 
potential, hardness and softness, and electrophilicity. The analysis with Fukui functions revealed 
the electrophilic and nucleophilic areas on ligands to understand their reaction behavior and binding 
process better.

Conclusion: The multi-method research approach integrates molecular docking quantum 
similarity analysis and chemical reactivity studies and delivers essential details about ligands 
targeting the SARS-CoV-2 RNA-dependent RNA polymerase. The research fi ndings support crucial 
advancements in designing drugs for COVID-19 treatment through rational methods.

How to cite this article: Morales-Bayuelo A, Pérez-Quiñones V, Zinhumwe Z, Mallri P. Evaluating the Effi  cacy of Different SARS-
Cov-2 Drug Targets Using the Topo-Geometrical Superposition Algorithm, Molecular Docking and Chemical Reactivity Frameworks. 
J Biomed Res Environ Sci. 2025 May 10; 6(5): 417-432. doi: 10.37871/jbres2099, Article ID: JBRES2099, Available at: https://www.
jelsciences.com/articles/jbres2099.pdf
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Introduction
Numerous countries worldwide are aff ected by the 

major global health crisis triggered by the COVID-19 
pandemic, while millions of people have confi rmed 
cases and thousands have died from the virus. 
Healthcare systems throughout diff erent nations 
battled unprecedented challenges that led to medical 
supply shortfalls and excessive hospital workloads 
while exhausting their medical personnel. Global 
challenges persist in the fi ght against the pandemic 
because vaccines represent the primary solution. 
At the same time, many nations continue facing 
reluctance to vaccination and logistical problems 
with distribution and inadequate access to vaccines.

SARS-CoV-2, the virus responsible for COVID-19, 
exhibits a range of symptom severity in those 
infected. Most individuals experience mild to 
moderate symptoms and recover without needing 
specifi c treatment, but some develop severe cases 
that require medical intervention [1]. The virus 
spreads mainly through tiny liquid particles released 
from an infected person's mouth or nose during 
activities like coughing, sneezing, talking, singing, or 
breathing. These particles, including small aerosols 
and larger respiratory droplets, can be transmitted 
via close contact with an infected person or by 
touching contaminated surfaces and the face [2]. As 
an RNA-dependent RNA polymerase (RdRp), SARS-
CoV-2 depends on this enzyme for replicating and 
transcribing its genome, making it a key focus for 
studying the virus's biology and developing antiviral 
treatments [3].

In the fi ght against COVID-19, several drugs are 
currently under investigation, but so far, only one 
has received FDA approval: Remdesivir (Veklury). 
This antiviral medication treats COVID-19 in adults 
and adolescents aged 12 and older and is typically 
administered intravenously to hospitalized patients 
[4,5]. To better understand how these drugs interact 
with the receptor's active site, this study employed 
Molecular Docking, Molecular Quantum Similarity 
(MQS), and various reactivity indices to evaluate 
remdesivir and other related compounds. These 
include Arbidol, Baloxavir marboxil, Letermovir 
(Prevymis), Nexavir (Sorafenib), Podophyllotoxin, 
Trifl uridine, Valaciclovir (Valtrex), and Zanamivir 
(Relenza).

The Molecular Quantum Similarity (MQS) 
concept, introduced by Carbo-Dorca and colleagues, 

investigates the molecular similarities across 
diff erent compounds. The method applies DFT 
with Molecular Quantum Mechanics and Quantum 
Chemistry to merge molecular docking operations 
with chemical reactivity indices [5]. The innovative 
approach has generated essential information about 
possible COVID-19 treatments while revealing the 
binding relationships between approved medications, 
including remdesivir and proposed ligands.

Methodology for Docking Studies
System preparation

In the docking experiment, the receptor structure 
was prepared following specifi c protocols, with the 
crystal structure of SARS-CoV-2 RNA-dependent 
RNA polymerase (PDB code 6M71) as the reference. 
The receptor structure was further refi ned using 
the Protein Preparation Wizard module from 
the Schrödinger Suite 2017-1, and the following 
adjustments were made:

i) Optimization of the hydrogen bond network 
and refi nement of the protein structure. 

ii) Protonation state determination at 
physiological pH using the PropKa utility. 

iii) Restraint-based molecular minimization via 
the Impact Refi nement (Impref) module, where 
heavy atoms were constrained to maintain 
a low Root-Mean-Square Deviation (RMSD) 
from the initial coordinates [6-8].

On the other hand, the molecular structures of 
the compounds were built using the Maestro Editor 
(Maestro, version 11.1, Schrödinger, LLC). The LigPrep 
module produced 3D conformations Epic predicted to 
exist under physiological pH conditions. The energy 
minimization process was executed through Macro 
Model using the OPLS2005 force fi eld for adequate 
structural optimization.

Molecular docking approach

Glide was used with default parameters and 
the Standard Precision (SP) model for the docking 
studies. The binding pocket of RNA-dependent RNA 
polymerase (RdRp) was defi ned by the following 
residues: GLY616, TRP617, ASP618, TYR619, LEU758, 
SER759, ASP760, ASP761, ALA762, LYS621, TYR799, 
TRP800, GLU811, PHE812, CYS813, and SER814. These 
residues were identifi ed using Glide's docking protocol 
[9,10]. The docking protocol used Glide scoring and 
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prime advanced conformational refi nement as part of 
its structured four-step workfl ow.

Initial docking: Glide performs rigid receptor 
docking to generate a range of ligand poses.

Side-Chain Prediction and Minimization: 
The protein is sampled using Prime’s side-chain 
prediction module, and the poses are minimized 
for each protein-ligand complex. Redocking: The 
ligand is redocked into the low-energy, induced-
fi t structures from the previous step using Glide’s 
default parameters (without van der Waals scaling). 
Binding Energy Estimation: The IFDScore, which 
includes docking energy (GScore), receptor strain, 
and solvation terms (from Prime energy), is 
calculated to estimate binding affi  nity. The degree 
of residue movement induced by the IFD process is 
further considered to investigate the active site's 
ligand interactions. All poses are compared within the 
molecular set for the most and least active ligands. 
Additionally, Molecular Dynamics (MD) simulations 
over 30 ns are performed to predict the most stable 
poses and evaluate their stability in the active site.

Quantum Similarity Analyses
Molecular quantum similarity measure

A Molecular Quantum Similarity Measure (MQSM) 
amid two A and B systems, known as ZAB, compares 
two molecules that may be created using their 
respective Density Functions (DFs).

Both DFs can be multiplied and integrated in 
terms of their electronic coordinates, which are then 
weighted using a predetermined positive operator 
Ω(r1,r2) [11-13]:

1 1 2 2 1 2( ) ( , ) ( )AB A B A BZ r r r r dr dr          (1)

Equation 1 depends on the operator to evaluate 
information comparison and determine the level of 
system similarity. For example, using the Dirac delta 
function as the operator is particularly eff ective for 
functions with sharp peaks, like electronic density. It 
also provides a mathematical abstraction similar to 
a point charge or point mass, expressed as Ω(r1,r2)= 
δ(r1- r2).

One of the initial similarity metrics utilized is 
the overlapping MQSM, while another commonly 
employed alternative is the Coulomb operator, given 
by Ω(r1,r2)= |r1- r2|⁻¹, resulting in a Coulombic 
MQSM. Even when comparing two equivalent 

molecules, a similarity measure can be applied to 
any pair of molecular systems; this measurement 
is referred to as a self-similarity measure (ZAA for 
molecule A) [12].

For a given set of N molecules, a similarity 
measure can be computed for each molecule relative 
to every other molecule in the group, including itself. 
These similarity measurements can then be used to 
construct a symmetric matrix. The i-th column of 
this matrix represents the similarity measurements 
between the i-th molecule and all other molecules in 
the group, including itself. Thus, each column (vector) 
serves as an N-dimensional representation of the i-th 
molecule. These vectors can be viewed as a collection 
of chemical descriptors. Unlike traditional molecular 
descriptor sets used in theoretical descriptions, 
the columns of this similarity matrix off er a unique 
and distinctive representation of each molecule's 
properties [12-20].

i) It is universal, derived from any collection of 
molecules and any individual molecule within that 
group.

ii) It is impartial, with no other possibilities 
available in the construction process than those 
dictated by the density functions and similarity 
measurements involved.

Carbó's similarity index 

        1/2
 IJ IJ II JJC z z z


               (2)        

Carbó's similarity index for two molecules, I and 
J, is calculated using Equation 2. Known as the cosine 
similarity index, this measure represents the cosine 
of the angle between the density functions when they 
are considered as vectors. For any pair of compared 
molecules, the Carbó QSI ranges from 0 to 1, refl ecting 
the degree of similarity between them, with a value 
closer to 1 indicating greater similarity (i.e., when I is 
identical to J) [13-28].

The quantum similarity using the Euclidean 
distance

Taking into account the similarity of equation 3:

 
    
 

 
1/2

 / 2
 , ,  ,  0,  

– 
II JJ

IJ
IJ

k z z
D k x x k

xz

 
 
 

 


  

      
(3) 

It is simplifi ed to the so-called Euclidean distance 
index when k= x= 2. Index 3 of the form can also be 
defi ned as follows:
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      ,  ,   IJ II JJD max z z          (4)            

This Equation 4 forms the distance index of 
infi nite order [18-30].

MQSM overlap considering the equation 2:

The distribution of Dirac's delta, Ω (r1, r2) = 
δ (r1, r2), is the most typical and intuitive choice 
for such a positively defi ned operator. These 
selections transform the broad defi nition of MQSM 
to compute the overlap MQSM that obtains volume 
measurements by both electronic density functions 
when superimposed [17-20].

1 1 2

2 1 2

( ) ( )
( )

( ) ( ) ( )
I

IJ
J I J

r r r
r dr dr r r dr

z  
  


 

        
(5)

The Dirac delta function is derived instinctively 
from the physical defi nition and is computationally 
compliant. The MQSM calculates the degree of overlap 
between molecular comparisons using information 
about the electron concentration in the molecule [16-
21].

MQS Coulomb Considering the Equation 5

When the operator (Ω) is replaced with the 

Coulomb operator, Ω (r1, r2) = 
1 2

1
| |r r

, the coulomb 

MQS is generated, which defi nes the electrostatically 
repellent coulomb energy between two charge 
densities [20,21]:

1 2 1 2
1 2

1( ) ( ) ( )IJ I Jr r dr drr rZ     
                   

 (6)

The equation enables expansion of the Coulomb 
operator through molecular density functions, 
which show electron distributions in space. As 
such, it can serve as a descriptor for electrostatic 
potential in specifi c contexts. This operator is 
related to electrostatic interactions and measures 
the electrostatic repulsion between electronic 
distributions [30-37].

Euclidean distance index considering the 
equation 3

Another major transformation that can be 
expressed in terms of the classical distance is:

1

1
( )

kp
k

ab j
j

xd


 
  
 
                                                                   (7)

Here j aj bjx x x    is the distance between 

a and b, and k=2 is the defi nition of distance, 
respectively. Subsequently, the Euclidean distance 
between A and B as two quantum objects is defi ned by 
[17-21]:

2( )aab bx xd   .                                                                     (8)

Occasionally, it is written as:

BBAB AA ABD Z Z ZZ   , where DAB has values in 

the range of [0,∞﴿ but for earlier circumstances where 
the compared items are identical, it converges to zero 
between them [17-21]: 

0ABD 
                               (9)

The norm of the diff erences in the density functions 
of the compared objects can be used to interpret this 
index geometrically. The distance or dissimilarity 
index can be used to defi ne the Euclidean distance 
index, which can also be represented as [21-25]:

2( )AB A B A BD        
                                    (10)

Alignment method -  TGSA (Topo-Geometrical 
Superposition Algorithm)

Gironés developed TGSA to apply molecular 
superposition theory to shared frameworks through 
atomic type matching and bonding interactions based 
on atomic number coordination principles [23-35].

Chemical Reactivity Analysis
The fi eld established that quantum similarity 

corresponds directly with chemical reactivity 
descriptors [37,38]. Both quantum similarity and DFT 
require the density function to calculate similarity 
indices. Chemical reactivity utilizes the Coulomb 
index as its electronic basis to achieve its eff ects. FMO 
analysis that accounts for the energy gap is required 
to compute global reactivity indices μ, ɳ, and ω [39-
44]. 

Results and Discussion
Molecular docking

The COVID-19 virus responsible for SARS-CoV-2 
undergoes regular mutations, which create new 
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variants that make drug development more diffi  cult. 
Developing treatments that work on diff erent virus 
strains represents a principal barrier. The quick virus 
spread, and immediate treatment requirements 
make it hard to adhere to standard drug development 
timelines. Rush processes needed during emergencies 
might lead to reduced testing procedures and 
validation routines.

Despite these challenges, the scientifi c community 
has made signifi cant strides, rapidly developing 
vaccines and exploring various therapeutic strategies. 
Ongoing research and global collaboration will be 
crucial for addressing the evolving nature of the 
pandemic and improving our ability to manage and 
treat COVID-19.

This study provides new insights into a series of 
ligands based on the crystal structure of SARS-CoV-2 
RNA-dependent RNA polymerase (PDB code 6M71). 
Figure 1 presents the molecular docking results for 
the compound Vidarabine.

In fi gure 1, the Vidarabine has interaction with the 
residues GLU166 (-H bond: 1.2581 Å and 1.2846 Å), 
CYS145 (-H bond: 1.3658 Å) and HIS41: 1.458 Å.

In fi gure 2, the Trifl uridine interacts with the 
residues GLU166 (-H bond: 1.1281 Å) and CYS145 (-H 
bond: 1.0158 Å). In the same form, the Letermovir 
interacts with the residues GLU166 (-H bond: 1.3282 
Å) and CYS145 (-H bond: 1.1285 Å and 1.3426 Å); 
(Figure 3).

Unlike fi gures 1-3, the Podophyllotoxin has no 
interaction with the residues GLU166 and CYS145. 
The compound has an interaction with the residue 
GLN189: 1.2548 Å.

Researchers can use the identifi cation of vital 
back pocket residues to create new drug development 
opportunities. The back pocket's structural stability 
relies on the contributions of the pocket's residue 
components. The evolutionary fi tness of the virus 
depends on specifi c pocket residues remaining 
conserved during evolutionary changes across 
diff erent virus strains. Medical research that targets 
invariant protein regions improves the potential for 
producing antiviral medications that work against 
diverse viral strains. The host immune system reacts 
to protein interactions within the back pocket region. 
Studying how viral proteins infl uence host immune 
pathways becomes essential because it enables 
researchers to develop approaches that boost the host 
immune defense against infections. When replicating 
viruses, they use existing cellular components from 
their host organisms. Back pocket residue interactions 
determine how the virus can adapt to and control host 
cellular processes and membrane transport functions. 
Coronaviruses and other viruses use diff erent tactics 
to avoid detection by the host immune system during 
infection. Specifi c residues in the back pocket help 
viruses evade host defense systems; thus, researchers 
could use these interactions to improve immune 
response eff ectiveness.

Figure 1 Molecular docking outcomes for the compound vidarabine.
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Figure 2 Molecular docking outcomes for the compound trifl uridine.

Figure 3 Molecular docking outcomes for the compound letermovir.

Understanding the importance of interactions 
with residues in the back pocket of a protein related 
to COVID-19 is essential for unraveling the virus's 
molecular mechanisms and guiding therapeutic 
interventions and drug development eff orts (Figure 
4).

Figures 5,6 show the interactions with the 
compounds Nexavir and Baloxavir marboxil, 
respectively. Nexavir interacts with the residues 

CYS145 (-H bond: 1.3692 Å) and THR25 (-H bond: 
1.1286 Å), while the compound Baloxavir marboxil 
interacts with the residues GLY143 (-H bond: 1.2486 
Å) and ASN142 (-H bond: 1.3942 Å).

Figures 7,8 show the interactions with the 
compounds Zanamivir and Arbidol. The compound 
Zanamivir interacts with the residues HIE164 (-H 
bond: 1.3658 Å), GLY143: 1.2569 Å and CYS145: 1.1586 
Å and 1.2564 Å.
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Figure 4 Molecular docking outcomes for the compound podophyllotoxin.

Figure 5 Molecular docking outcomes for the compound nexavir.

Protein structures associated with COVID-19 
require stable bonds between hydrogen molecules to 
maintain their structure. Hydrogen bonds help shape 
protein three-dimensional structures and serve 
as essential elements that support stable protein 
molecule stability. Hydrogen bonds are critical to 
building secondary protein structures because they 
produce alpha helices and beta sheets. The stabilizing 
forces of alpha helices occur when the carbonyl oxygen 
of one amino acid bonds to the amide hydrogen 

of an amino acid located a distance downstream, 
maintaining the helical shape. Beta sheets exist as 
stable structures because hydrogen bonds connect the 
adjacent strands. The solubility of proteins depends on 
hydrogen bond interactions between water molecules 
and polar amino acid side chains outside the protein 
structure. A protein maintains its stable solution 
environment through water molecules that interact 
with it. Hydrogen bonds are dynamic because they 
create and break apart, thus enabling proteins to shift 
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Figure 6 Molecular docking outcomes for the compound baloxavir marboxil.

Figure 7 Molecular docking outcomes for the compound zanamivir.

their structures. The dynamic stability mechanism 
enables protein transition between functional states 
because enzymes need it to change between active 
and inactive states.

Quantum similarity analysis

In table 1, the higher overlap similarity is between 
the compounds Vidarabine-R vs Trifl uridine-R 
with 0.5673 with a Euclidean distance of 4.5422 

(Table 2) and the lowest similarity is between 
Zanamivir (Relenza)-R vs Letermovir-R with 0.1793 
their euclidean distance of 7.5148. The similarity 
values are generally low (under 0.5), considering the 
interval related to the Carbo index (0.1). 

On the Other hand, in table 3, we can see the 
higher electronic similarity between the compound 
Vidarabine-R vs., Trifl uridine-R with 0.9529 with a 
Euclidean distance of 14.3644 (Table 4) and the lowest 



Morales-Bayuelo A, et al. (2025) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres2099 425

Figure 8 Molecular docking outcomes for the compound arbidol.

Table 1: Overlap molecular quantum similarity values.

O_Hab Arb Lete Nexa Podo Trifl u Vala Vida Zana

Arb 1.0000

Lete 0.2985 1.0000

Nexa 0.3263 0.2009 1.0000

Podo 0.3733 0.2713 0.2597 1.0000

Trifl u 0.3107 0.5107 0.4074 0.3278 1.0000

Vala 0.3331 0.2776 0.2742 0.2039 0.3342 1.0000

Vida 0.3685 0.2379 0.2417 0.2371 0.5673 0.3488 1.0000

Zana 0.3086 0.1793 0.1795 0.3111 0.2734 0.2638 0.3212 1.0000

Table 2: Euclidean distance using the overlap operator.

O_Dab Arb Lete Nexa Podo Trifl u Vala Vida Zana

Arb 0.0000

Lete 6.8628 0.0000

Nexa 6.1639 7.7602 0.0000

Podo 5.7267 7.2353 6.7469 0.0000

Trifl u 5.9138 5.9194 5.9685 6.1410 0.0000

Vala 5.5566 6.9379 6.3696 6.4222 5.7886 0.0000

Vida 5.2113 6.9548 6.3227 6.0894 4.5422 5.2632 0.0000

Zana 5.8325 7.5148 6.9308 6.1351 6.2123 5.9916 5.5602 0.0000

Table 3: Coulomb molecular quantum similarity values.

C_Hab Arb Lete Nexa Podo Trifl u Vala Vida Zana

Arb 1.0000

Lete 0.8188 1.0000

Nexa 0.7329 0.7681 1.0000

Podo 0.8689 0.7645 0.8005 1.0000

Trifl u 0.7811 0.8213 0.7429 0.8320 1.0000

Vala 0.8045 0.7885 0.6250 0.8210 0.7972 1.0000

Vida 0.7779 0.5901 0.6676 0.7416 0.9529 0.6885 1.0000

Zana 0.8490 0.7389 0.7599 0.8167 0.6525 0.7626 0.6939 1.0000



Morales-Bayuelo A, et al. (2025) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres2099 426

similarity between the compounds Vidarabine-R vs. 
Letermovir-R with 0.5901 and a euclidean distance 
of 61.1425. Unlike the overlap similarity values, the 
electronic similarity is above 0.5 with the Carbo index 
(0.1). Therefore, in the set studied, although the 
molecules are quite diff erent from a structural point 
of view, they are quite similar from an electronic 
point of view.

Electronic similarity proves essential for drug 
design because it determines potential new drug 
candidates' performance, selectivity, and safety 
levels. The rational design of drugs requires a 
thorough understanding and effi  cient use of 
electronic similarity. Drug design heavily depends on 
electronic similarity because drugs must match their 
targets through binding affi  nity. Potent and specifi c 
biomolecule interactions result from electronic 
properties that match between drug molecules 
and their targets, thus producing eff ective binding 
events. Drugs require electronic similarity to achieve 
proper selectivity during their action mechanism. 
The selective interaction between drugs with 
electronic profi les and particular target proteins or 
receptors decreases unexpected drug eff ects, creating 
superior therapeutic benefi ts. The investigation of 
drug behavior at a molecular level often depends 
on electronic structure evaluations that quantum 

mechanical calculations help assess. Drug developers 
use these considerations to improve electronic 
characteristics for achieving specifi c drug activities.

Chemical reactivity study

Ligand stabilizing factors in proteins depend 
heavily on chemical reactivity indices. Researchers 
studying these indices learn about ligand-protein 
binding interactions that explain protein-ligand 
stability and specifi c and non-specifi c binding 
abilities. The bond strength between ligands and 
proteins depends on electronic and thermodynamic 
factors representing chemical reactivity indices. 
Ligands with advantageous electronic properties 
form robust bonds that improve their binding 
capabilities toward proteins. The propensity for 
electrophilic or nucleophilic reactions between 
ligands and particular amino acid residues in proteins 
depends on the reactivity indices of electrophilicity 
and nucleophilicity. The protein binding site becomes 
more stable due to the interactions that occur between 
ligands. Table 5 presents the global reactivity indices 
because of the highest similarity values derived from 
electronic perspectives.

Table 5 shows the values of the global reactivity 
indices. The compound with the highest chemical 
potential is Trifl uridine-R with μ = -4.6889eV. 

Table 4: Euclidean distance using the coulomb operator.

C_Dab Arb Lete Nexa Podo Trifl u Vala Vida Zana

Arb 0.0000

Lete 43.8093 0.0000

Nexa 42.2388 48.4877 0.0000

Podo 29.9169 48.8483 37.4501 0.0000

Trifl u 35.4518 45.7493 39.5504 33.1973 0.0000

Vala 33.8267 47.7126 47.6373 34.0725 30.7978 0.0000

Vida 35.5541 61.1425 44.0302 40.0380 14.3644 37.0406 0.0000

Zana 30.0799 51.2319 38.8327 34.5350 41.2215 34.7385 37.7945 0.0000

Table 5: Chemical reactivity indices.

Compound C. Potential (μ) Hardness (η) Softness (S) Electrophilicity (μ)

Arbidol -3.1190 4.5868 0.2180 1.0604

Letermovir-R -3.5314 4.6572 0.2147 1.3388

Nexavir -3.9948 4.3340 0.2307 1.8411

Podophyllotoxin-R -3.5282 5.1293 0.1949 1.2134

Trifl uridine-R -4.6889 5.0083 0.1996 2.1950

Valaciclovir (Valtrex)-R -2.8524 2.8428 0.3517 1.4311

Vidarabine-R -3.4062 4.8249 0.2072 1.2023

Zanamivir (Relenza)-R -3.6942 3.6001 0.2778 1.8954
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The compound with the highest hardness is 
Podophyllotoxin-R, with η = 5.1293 eV. The compound 
with the highest softness is Valaciclovir  (Valtrex)-R 
with S=0.3517 eV-1. Finally, the compound with 
the highest electrophilicity is Trifl uridine-R with ɷ 
=2.1950 eV.

Electrophilic ligands may form strong interactions 
with nucleophilic sites on the protein, such as amino 
acid residues with electron-rich functional groups 
(e.g., nitrogen or sulfur atoms). The electrophilic 
nature of the ligand facilitates the formation of 
covalent or non-covalent bonds with the nucleophilic 
sites, contributing to higher binding affi  nity. 

Figure 9-15 shows the Fukui Functions related to 
the selected compounds, considering their biological 
activity. Given that the reactivity indices related 
to electrostatic properties infl uence the strength 

of electrostatic interactions between ligands and 
proteins, understanding these indices helps assess 
the role of electrostatic forces in ligand stabilization 
within the protein binding site.

The central skeleton of aromaticity contains the 
site of local chemical reactivity for the ligand Arbidol. 
Aromaticity, a key concept in organic chemistry, 
plays a signifi cant role in local reactivity. Aromatic 
systems found in molecules produce their special 
stability pattern and response behavior. Benzene 
rings demonstrate exceptional stability because π 
electrons spread throughout the molecule through 
resonance delocalization. The stability of aromatic 
systems aff ects the local reactivity by infl uencing the 
likelihood of chemical reactions occurring in their 
vicinity.

Aromatic systems exhibit a high electron density 

A) B)

Figure 9 Fukui function ( )f r   and ( )f r   calculated under the FMO approximation (a) 2( )HOMO r and (b) ( 2( )LUMO r ) respectively. The 
value for the ligand Arbidol was 0.008 in both cases. The value was created using Gauss View 5.0.

A) B)

Figure 10 Fukui function ( )f r   and ( )f r   calculated under the FMO approximation (a) 2( )HOMO r and (b) ( 2( )LUMO r ) respectively. For 
the ligand Baloxavir marboxil, the value was 0.008 in both cases. The fi gure was created using gauss view 5.0.
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A) B)

Figure 11 Fukui function ( )f r   and ( )f r 
 calculated under the FMO approximation (a) 2( )HOMO r and (b) ( 2( )LUMO r ) respectively. For 

the ligand Letermovir (Previous). The value was 0.008 in both cases. The fi gure was created using gauss view 5.0.

A) B)

Figure 12 Fukui function ( )f r   and ( )f r 
 calculated under the FMO approximation (a) 2( )HOMO r and (b) ( 2( )LUMO r ) respectively. For 

the ligand Nexavir (Sorafenib). The value was 0.008 in both cases. The fi gure was created using gauss view 5.0.

A) B)

Figure 13 Fukui function ( )f r   and ( )f r 
  calculated under the FMO approximation  (a) 2( )HOMO r and (b) ( 2( )LUMO r ) respectively. For 

the ligand Podophyllotoxin. That value was 0.008 in both cases. The fi gure was created using gauss view 5.0.



Morales-Bayuelo A, et al. (2025) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres2099 429

A) B)

Figure 14 Fukui function ( )f r   and ( )f r 
  calculated under the FMO approximation (a) 2( )HOMO r and (b) ( 2( )LUMO r ) respectively. For 

the ligand Trifl uridine. The value was 0.008 in both cases. The fi gure was created using gauss view 5.0.

A) B)

Figure 15 Fukui function ( )f r   and ( )f r 
  calculated under the FMO approximation  (a) 2( )HOMO r and (b) ( 2( )LUMO r ) respectively. For 

the ligand Vidarabine. The value was 0.008 in both cases. The fi gure was created using gauss view 5.0.

above and below the plane of the ring. This localized 
electron density aff ects the local reactivity by 
infl uencing the aromatic system's susceptibility to 
nucleophiles or electrophiles.

The Fukui functions reported can identify 
nucleophilic and electrophilic sites in a ligand. 
Ligands with nucleophilic sites may form favorable 
interactions with electrophilic residues in the protein 
and vice versa, contributing to ligand stabilization. 
Fukui functions can guide the design of ligands with 
electronic properties compatible with the protein's 
binding site.

Ligands tailored to interact favorably with the 
electronic environment of the protein binding site are 
more likely to achieve stable binding. Fukui functions 

to aid in optimizing ligand design for enhanced 
reactivity and stability. Developing ligands through 
electronic reactivity analysis allows scientists to 
design molecules that best suit protein electronic 
environments. The Fukui functions deliver important 
electronic reactivity data about ligands to help 
researchers analyze their interactions with proteins. 
Using Fukui functions in ligand design supports the 
logical creation of durable ligand-protein complexes 
with preferred characteristics for drug development 
studies and molecular recognition research.

Conclusion
Scientists face multiple hurdles while developing 

COVID-19 drugs due to genetic variations, the virus's 
quick spread, the absence of existing treatments, the 
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complicated viral replication process, and drug safety 
issues.  This study obtained insights into a series of 
ligands based on the crystal structure of SARS-CoV-2 
RNA-dependent RNA polymerase (PDB code 6 m 71). 
Molecular docking outcomes revealed interactions 
with specifi c residues for each ligand. The back 
pocket protein interactions remain vital because they 
infl uence how the protein functions, shapes itself 
and contributes to viral replication. The stabilization 
mechanism of COVID-19 protein structures depends 
heavily on hydrogen bonding, leading to proper 
protein folding, stability maintenance, and functional 
conformational changes.

Quantum similarity analysis showed low 
structural ligand similarity while demonstrating 
high electronic similarity patterns as key elements 
in drug development for their infl uence on drug-
target binding and safety levels. Combining chemical 
reactivity indices enhanced knowledge about ligand-
protein interactions, accelerating the development 
of helpful drug candidates. The study focused on 
local reactivity aspects, especially those controlled 
by aromatic characteristics, to show why aromatic 
systems play an essential role in ligand stability and 
reactivity. Fukui function analysis, which identifi ed 
electrophilic and nucleophilic sites within ligands, 
provided valuable guidance on ligand stability for 
binding purposes. Developing new drugs to combat 
COVID-19 requires complete knowledge of how 
ligands interact with proteins, their electronic 
properties, and chemical reactivity. The acquired 
knowledge proves vital for both therapeutic strategy 
improvement and the development of eff ective 
antiviral medications.

Underlying Data
Morales-Bayuelo, Alejandro, 2023, "Replication 

data for Study of a series of ligands used as inhibitors 
of the SARS-CoV-2 virus", https://doi.org/10.7910/
DVN/7KFPUT, Harvard Dataverse, V1
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