Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 8672289910

Biophysical Aspects of Interactions at the Bionanointerface between Viruses and Metal and Metal Oxide Nanomaterials

Biology Group    Start Submission

Lahir YK*

Volume1-Issue5
Dates: Received: 2020-09-14 | Accepted: 2020-09-23 | Published: 2020-09-28
Pages: 175-185

Abstract

Viruses are at the threshold of living and nonliving entities. Virus particles exhibit life-activities when are within their respective hosts and act as non-living when present outside their hosts. This feature is very interesting and the related investigations can help to understand the differences between the functionalities at bionanointerfaces under living and nonliving phases. Metal and metal oxide nanomaterials occur naturally and are synthesized as per the need to meet the set targets. These nanosized materials have specific physicochemical properties such as high volume to area ratio, ability to get functionalized as per the need. These ubiquitous materials have multifaceted applications in almost all fields of sciences, industries, medical, clinical diagnostics, and remedial operations; these occupy an omnipresent status in our day to day life. Since these nanomaterials are a major integral part of industries and human life; these interact with the abiotic and biotic components of the environment. Viruses are the active entities of both these aspects of our environment. The interactions between metal and metal oxide nanomaterials and viruses are obvious and complex interactive phenomena. These complex interactions take place between nanomaterials and viruses within their respective hosts. The profiling of such interactions helps to optimize the resultant impacts and enhances the degree of de novo designing, in vivo, and in vitro performances.

FullText HTML FullText PDF DOI: 10.37871/jbres1140


Certificate of Publication




Copyright

© 2020 Lahir YK, Distributed under Creative Commons CC-BY 4.0

How to cite this article

Lahir YK. Biophysical Aspects of Interactions at the Bionanointerface between Viruses and Metal and Metal Oxide Nanomaterials. J Biomed Res Environ Sci. 2020 Sep 28; 1(5): 175-185. doi: 10.37871/jbres1140, Article ID: jbres1140


Subject area(s)

University/Institute

References


  1. Hutmatcher D, Chrazanowaski W. Biointerfaces: Where material meets biology. Royal Society of Chemistry. Cambridge. 2015. doi: 10.1039/9781782628453
  2. Chen D, Wang D, Li J. Interfacial bioelectrochemistry fabrication: Properties, and applications of functional nanostructured biointerface, American Chemical Society. J Phys Chem C. 2007 Dec14;11(6):2351-2367. doi: 10.1021/jp065099w
  3. Lahir YK, Avti P. Nanomaterials and their interactive behavior with biomolecules, cell, and tissues, (Bentham Books) Bentham Science Publishers, Singapore; 2020. doi: 10.2174/97898114617811200101.
  4. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009 Jul;8(7):543-557. doi: 10.1038/nmat2442. Epub 2009 Jun 14. PMID: 19525947.
  5. Chilkoti A and Hubbell JA. Biointerface Science. MRS Bulletin. 2005;30(3):175-179. doi: 10.1557/mrs2005.48
  6. Lahaan J and Langer R. Smart materials with dynamically controlled surfaces. MRS Bulletin. 2005;30(3):185-188. doi: 10.1557/mrs2005.50
  7. Mrkisch M. Dynamic substrates for cell biology. MRS Bulletin. 2005;30(3):180-184. doi: 10.1557/mrs2005.49
  8. Lahir YK. Interactions at the interface between nanomaterials and biofilm: A General Survey. Advances in Clinical toxicology-med win publishers. 2020;5(3): doi: 10.23803/act-16000192
  9. Breitbart M, Rohwer F. Here virus, there virus, everywhere the same virus, Trend in Microbiology. 2005;13(6):273-284. doi: 10.1016/j.tim.2005.04.003
  10. Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol. 2005 Jun;3(6):504-510. doi: 10.1038/nrmicro1163. PMID: 15886693.
  11. Leland DS. Clinical Virology, Saunders, New York. 1996
  12. Buzon P, Maity S, Roos WH. Physical virology: From virus self-assembly to particle mechanics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Jul;12(4):e1613. doi: 10.1002/wnan.1613. Epub 2020 Jan 20. PMID: 31960585; PMCID: PMC7317356.
  13. Sunnen GV. A Virology Primer: with special reference to ozone.
  14. Capsid. Definition, function and structure. 2017 Aug.
  15. Envelope virus. Wikipedia, Wikipedia. 2017 Aug.
  16. Smith TJ, Chase ES, Schmidt TJ, Olson NH, Baker TS. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature. 1996 Sep 26;383(6598):350-354. doi: 10.1038/383350a0. PMID: 8848050; PMCID: PMC4167671.
  17. Lodish H, Berk A, Zipursky SL, Matsudaria P, Baltimore D, Darnell J. Molecular cell Biology, (4th Ed) New York, Scientific American Books. 2000.
  18. Alberts B, Johnson A, Lewis I, Morgan D, Raff M, Roberts K, and Walter P. Molecular Biology of Cell (16th Ed), Garland Science, ISBN 978-1-317-56375-4. 2014.
  19. Goldsmith CS, Miller SE. Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev. 2009 Oct;22(4):552-563. doi: 10.1128/CMR.00027-09. PMID: 19822888; PMCID: PMC2772359.
  20. Gelderblom HR, Madeley D. Rapid Viral Diagnosis of Orthopoxviruses by Electron Microscopy: Optional or a Must? Viruses. 2018 Mar 22;10(4):142. doi: 10.3390/v10040142. PMID: 29565285; PMCID: PMC5923436.
  21. Zhang Y, Hung T, Song J, He J. Electron microscopy: Essentials for viral structure, morphogenesis and rapid diagnosis. Sci China Life Sci. 2013 May;56(5):421-430. doi: 10.1007/s11427-013-4476-2. Epub 2013 May 1. PMID: 23633074; PMCID: PMC7089233.
  22. Rossmann MG. Crystallography, evolution, and the structure of viruses. J Biol Chem. 2012 Mar 16;287(12):9552-9. doi: 10.1074/jbc.X112.348961. Epub 2012 Feb 8. PMID: 22318719; PMCID: PMC3308792.
  23. Beniac DR, Melito PL, Devarennes SL, Hiebert SL, Rabb MJ, Lamboo LL, Jones SM, Booth TF. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One. 2012;7(1):e29608. doi: 10.1371/journal.pone.0029608. Epub 2012 Jan 11. PMID: 22247782; PMCID: PMC3256159.
  24. Carter SD, Surtees R, Walter CT, Ariza A, Bergeron É, Nichol ST, Hiscox JA, Edwards TA, Barr JN. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol. 2012 Oct;86(20):10914-10923. doi: 10.1128/JVI.01555-12. Epub 2012 Aug 8. PMID: 22875964; PMCID: PMC3457148.
  25. Julian O and Well JA. Caspases and their substrates, Cell Death and Differentiation, 2017;24(8): 1380-1389. doi.10.1038//cdd.2017.44
  26. Lin Z, Li Y, Guo M, Xiao M, Wang C, Zhao M, Xn T, Xia Y, Zh B. Inhibition of HINI influenza virus by selenium nanoparticles loaded with zanamivir through p38 and JNK signaling pathways, RSC Adv. 2017 July;7:35290-35295. doi: 10.1039/C7RA06477B
  27. Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C, Xu T, Chen T, and Zhu B, (2017) Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus, International Journal of Nanomedicine, 2017 July;12:5733-5743. doi.10.2140.S140939
  28. Schijven JF, Hassanizadeh SM. Removal of viruses by soil passage: an overview of modeling, process and parameters. Crit Rev Env Tech. 2000;30:49-127. doi: 10.1080/10643380091184174
  29. Matsushita T, Matsui Y, Shirasaki N. Analysing mass balance of viruses in a coagulation-ceramic microfiltration hybrid system by a combination of the Polymerase Chain Reaction (PCR) method and the Plaque Forming Units (PFU) method. Water Sci Technol. 2006;53(7):199-207. doi: 10.2166/wst.2006.225. PMID: 16752782.
  30. Cashdollar JL, Dahling DR. Evaluation of a method to re-use electropositive cartridge filters for concentrating viruses from tap and river water. J Virol Methods. 2006 Mar;132(1-2):13-17. doi: 10.1016/j.jviromet.2005.08.016. Epub 2005 Sep 27. PMID: 16194574.
  31. Brorson K, Shen H, Lute S, Pérez JS, Frey DD. Characterization and purification of bacteriophages using chromatofocusing. J Chromatogr A. 2008 Oct 17;1207(1-2):110-121. doi: 10.1016/j.chroma.2008.08.037. Epub 2008 Aug 15. PMID: 18778829.
  32. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM. Electrical detection of single viruses. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14017-14022. doi: 10.1073/pnas.0406159101. Epub 2004 Sep 13. PMID: 15365183; PMCID: PMC521090.
  33. Michen B, Graule T. Isoelectric points of viruses. J Appl Microbiol. 2010 Aug;109(2):388-397. doi: 10.1111/j.1365-2672.2010.04663.x. Epub 2010 Jan 22. PMID: 20102425.
  34. Arkhipenko MV, Nikitin NA, Baranov OA, Evtushenko EA, Atabekov JG, Karpova OV. Surface charge mapping on virions and virus-like particles of helical plant viruses. Acta Naturae. 2019 Oct-Dec;11(4):73-78. doi: 10.32607/20758251-2019-11-4-73-78. PMID: 31993237; PMCID: PMC6977955.
  35. Mi X, Bromley EK, Joshi PU, Long F, Heldt CL. Virus isoelectric point determination using single-particle chemical force microscopy. Langmuir. 2020 Jan 14;36(1):370-378. doi: 10.1021/acs.langmuir.9b03070. Epub 2019 Dec 31. PMID: 31845814.
  36. Christin S, Finja K, Robert M, Isabel A, Maria G-M, Hermann W. Physicochemical properties of SARSCoV2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control, Electrophoresis, 2020 May;41(13-14):1137-1151. doi: 10.1002/elps.202000121
  37. Michael DV, Fletcher DA. Influenza-A-virus surface proteins are organized to help penetrate host mucus, (Microbiology and Infectious Disease), elife. 2019;8:e43764. doi: 10.7554/elife.43764
  38. Mayer BK, Yang Y, Gerrity DW, Morteza A. The impact of capsid proteins on virus removal and inactivation during the water treatment process, Microbiology Insight. 2015 Nov;8(Supp-2): 15-28. doi:10.4137/MBI.S31441
  39. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA. Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem. 2009;2(1):18-45. doi: 10.1002/cssc.200800227. PMID: 19142903.
  40. Harish KK, Nagasamy V, Himangshu B, Anuttam K. Metallic Nanoparticles: A review. BJSTR. 2018;4(2): 3765- 3775. doi: 10.26717/BSTR.2018.04.001011
  41. Reina G, Peng S, Jacquemin L, Andrade AF, Bianco A. Hard nanomaterials in time of viral pandemics. ACS Nano. 2020 Aug 25;14(8):9364-9388. doi: 10.1021/acsnano.0c04117. Epub 2020 Jul 22. PMID: 32667191; PMCID: PMC7376974.
  42. AE, Helenius A. How viruses enter animal cells. Science. 2004 Apr 9;304(5668):237-242. doi: 10.1126/science.1094823. PMID: 15073366.
  43. Dermody TS, Kirchner E, Guglielmi KM, Stehle T. Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity. PLoS Pathog. 2009 Nov;5(11):e1000481. doi: 10.1371/journal.ppat.1000481. Epub 2009 Nov 26. PMID: 19956667; PMCID: PMC2777377.
  44. Bhella David. The role of cellular adhesion molecules in virus attachment and entry. Phil Trans R Soc. 2015;B37020140035. doi: 10.1098/rstb.2014.0035
  45. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734. doi: 10.1073/pnas.2003138117. Epub 2020 May 6. PMID: 32376634; PMCID: PMC7260975.
  46. Javidpour L, Bozic AL, Podornik R, and Naji A. Role of metallic core for stability of virus like-particle in strongly coupled electrostatics, Scientific Reports. 2019 Mar; 3881. doi: 1038/s41598-019-39930-8
  47. Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. 2017 Jul;4(4):105-131. doi: 10.1177/2049936117713593. Epub 2017 Jul 5. PMID: 28748089; PMCID: PMC5507392.
  48. Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine. 2017 Jan;13(1):219-230. doi: 10.1016/j.nano.2016.08.016. Epub 2016 Aug 26. PMID: 27575283; PMCID: PMC5237416.
  49. Di Gianvincenzo P, Marradi M, Martínez-Avila OM, Bedoya LM, Alcamí J, Penadés S. Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett. 2010 May 1;20(9):2718-2721. doi: 10.1016/j.bmcl.2010.03.079. Epub 2010 Mar 25. PMID: 20382017.
  50. Arnáiz B, Martínez-Ávila O, Falcon-Perez JM, Penadés S. Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjug Chem. 2012 Apr 18;23(4):814-825. doi: 10.1021/bc200663r. Epub 2012 Mar 30. PMID: 22433013.
  51. Di Gianvincenzo P, Chiodo F, Marradi M, Penadés S. Gold manno-glyconanoparticles for intervening in HIV gp120 carbohydrate-mediated processes. Methods Enzymol. 2012;509:21-40. doi: 10.1016/B978-0-12-391858-1.00002-2. PMID: 22568899.
  52. Marradi M, Di Gianvincenzo P, Enríquez-Navas PM, Martínez-Ávila OM, Chiodo F, Yuste E, Angulo J, Penadés S. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J Mol Biol. 2011 Jul 29;410(5):798-810. doi: 10.1016/j.jmb.2011.03.042. Epub 2011 Mar 25. PMID: 21440555.
  53. Meléndez-Villanueva MA, Morán-Santibañez K, Martínez-Sanmiguel JJ, Rangel-López R, Garza-Navarro MA, Rodríguez-Padilla C, Zarate-Triviño DG, Trejo-Ávila LM. Virucidal Activity of Gold Nanoparticles Synthesized by Green Chemistry Using Garlic Extract. Viruses. 2019 Nov 30;11(12):1111. doi: 10.3390/v11121111. PMID: 31801280; PMCID: PMC6950311.
  54. A, Kafshdooz L, Razban Z, Dastranj Tbrizi A, Rasoulpour S, Khalilov R, Kavetskyy T, Saghfi S, Nasibova AN, Kaamyabi S, Kafshdooz T. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif Cells Nanomed Biotechnol. 2018 Mar;46(2):263-267. doi: 10.1080/21691401.2017.1307208. Epub 2017 Apr 12. PMID: 28403676.
  55. Yang ZH, Zhuo Y, Yuan R, Chai YQ. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens Bioelectron. 2015 Jul 15;69:321-327. doi: 10.1016/j.bios.2015.01.035. Epub 2015 Jan 17. PMID: 25791337.
  56. Concha T, David B, M Arturo L. Core-Shell Nanocatalysts Obtained in Reverse Micelles: Structural and Kinetic Aspects. Journal of Nanomaterials. 2015;1-10. doi: 10.1155/2015/601617
  57. Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol. 2019 Jan 24;10:22. doi: 10.3389/fimmu.2019.00022. PMID: 30733717; PMCID: PMC6353795.
  58. Dhakal S, Renukaradhya GJ. Nanoparticle-based vaccine development and evaluation against viral infections in pigs. Vet Res. 2019 Nov 6;50(1):90. doi: 10.1186/s13567-019-0712-5. PMID: 31694705; PMCID: PMC6833244.
  59. Alphandéry E. The Potential of Various Nanotechnologies for Coronavirus Diagnosis/Treatment Highlighted through a Literature Analysis. Bioconjug Chem. 2020 Aug 19;31(8):1873-1882. doi: 10.1021/acs.bioconjchem.0c00287. Epub 2020 Jul 8. PMID: 32639742; PMCID: PMC7359670.
  60. Han Y, Král P. Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2. ACS Nano. 2020 Apr 28;14(4):5143-5147. doi: 10.1021/acsnano.0c02857. Epub 2020 Apr 16. PMID: 32286790; PMCID: PMC7163933.
  61. J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI, Gutierrez RA, Gwee SXW, Chua PEY, Yang Q, Ng XY, Yap RK, Tan HY, Teo YY, Tan CC, Cook AR, Yap JC, Hsu LY. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J Clin Med. 2020 Feb 26;9(3):623. doi: 10.3390/jcm9030623. PMID: 32110875; PMCID: PMC7141113.
  62. Liga MV, Bryant EL, Colvin VL, Li Q. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 2011 Jan;45(2):535-544. doi: 10.1016/j.watres.2010.09.012. Epub 2010 Sep 19. PMID: 20926111.
  63. Soylemez E, de Boer MP, Sae-Ueng U, Evilevitch A, Stewart TA, Nyman M. Photocatalytic degradation of bacteriophages evidenced by atomic force microscopy. PLoS One. 2013;8(1):e53601. doi: 10.1371/journal.pone.0053601. Epub 2013 Jan 3. PMID: 23301095; PMCID: PMC3536765.
  64. Rao G, Brastad KS, Zhang Q. Rebecca R, Zhen H, Ying Li. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane. Front Environ Sci Eng. 2016 June. doi: 10.1007/s11783-016-0854-x
  65. Häggström J, Balyozova D, Klabunde KJ, Marchin G. Virucidal properties of metal oxide nanoparticles and their halogen adducts. Nanoscale. 2010 Apr;2(4):529-534. doi: 10.1039/b9nr00273a. Epub 2010 Feb 2. PMID: 20644755.
  66. Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Farah BS, Zehmatkeshan M, Vahid PM, Monavari SH, Angila AP. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine, Journal of Biomedical Sciences. 2019 Sep. doi: 10.1186/s12929-019-0563-4
  67. Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC, Ansari Y, Das VNR, Topno RK, Bhawna, Madhukar M, Das P. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother. 2019 May;25(5):325-329. doi: 10.1016/j.jiac.2018.12.006. Epub 2019 Feb 13. PMID: 30770182.
  68. Anthony von Fraunhofer. Adhesion and cohesion, International Journal of dentistry. 2012;1-8. doi: 10.1155/2012/951324
  69. Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol. 2017 Dec;162(12):3567-3585. doi: 10.1007/s00705-017-3497-8. Epub 2017 Sep 2. PMID: 28866775; PMCID: PMC5671522.
  70. Terrettaz S, Vogel H. Investigating the functions of ion-channels in tethered membranes by impedance spectroscopy, MRS Bulletin. 2005;30(3):207-210. doi: 10.1557/mrs2005.54
  71. Chen CS, Jiang X, Whitesides GM. Microengineering the environment of mammalian cells in culture, MRS Bulletin. 2005;30(3): 194-201. doi: 10.1557/mrs2005.52
  72. Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL. Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health. 2016 Apr 19;13(4):430. doi: 10.3390/ijerph13040430. PMID: 27104546; PMCID: PMC4847092.
  73. Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine. 2019 Jun;18:196-220. doi: 10.1016/j.nano.2019.03.004. Epub 2019 Mar 21. PMID: 30904587; PMCID: PMC7106268.
  74. Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, Cioffi N. Can Nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials (Basel). 2020 Apr 21;10(4):802. doi: 10.3390/nano10040802. PMID: 32326343; PMCID: PMC7221591.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search