Nafisa Tabassum, Ilora Shabnam Kheya, Syed Abdullah Ibn Asaduzzaman, Syeda Muntaka Maniha, Abrar Hamim Fayz, Amayna Zakaria and Rashed Noor*
Volume1-Issue4
Dates: Received: 2020-08-06 | Accepted: 2020-08-22 | Published: 2020-08-26
Pages: 105-113
Abstract
The finding of electron leakage during the electron transport within the mitochondrial membrane (in eukaryotes) or in the cell membrane of the prokaryotes is an important issue for the accumulation of the Reactive Oxygen Species (ROS) in the cytosol which in turn induce the probable aging of cells. In eukaryotes, mitochondrion is known to be the major site of the ROS generation in different pathological processes which may further cause cell damages as evident through the ischemia-reperfusion (I/R) injury, respiratory diseases, cell apoptosis, and even the onset of cancer. Thus, the mitochondrial leakage and the physiological effect of leaked protons and electrons grow up with future interest in energy metabolism. Current review focused on the physiological impact of electron/ proton leakage particularly in the eukaryotic cells based on the previous reports; emphasized on the prospects of the eukaryotic mitochondrion as a modulator of proton and electron leakage; and finally attempted to assess the regulatory mechanisms of such electron/ proton leakage.
FullText HTML
FullText PDF
DOI: 10.37871/jels1127
Certificate of Publication

Copyright
© 2020 Tabassum N, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R. A Review on the Possible Leakage of Electrons through the Electron Transport Chain within Mitochondria. J Biomed Res Environ Sci. 2020 Aug 26; 1(4): 105-113. doi: 10.37871/jels1127, Article ID: jels1127
Subject area(s)
References
- Kasumov EA, Kasumov RE, Kasumova IV. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energytransforming membranes: A personal perspective. Photosynthesis Research. 2015; 123: 1-22. DOI: 10.1007/s11120-014-0043-3
- Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013; 6: 19. DOI: 10.1186/1756-8722-6-19
- Rich PR, Marechal A. The mitochondrial respiratory chain. Essays Biochem. 2010; 47: 1-23. DOI: 10.1042/bse0470001
- Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry. 2005; 70: 200-214. DOI: 10.1007/s10541-005-0102-7
- Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010; 45: 466-472. DOI: 10.1016/j.exger.2010.01.003
- Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1-13. DOI: 10.1042/BJ20081386
- Lambert AJ, Brand MD. Superoxide production by NADH: Ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J. 2004; 382: 511-517. DOI: 10.1042/BJ20040485
- Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1-13. DOI: 10.1042/BJ20081386
- Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci. 2015; 112: 11389-11394. DOI: 10.1073/pnas.1513047112
- Brand MD, Pamplona R, Portero-Otin M, Requena JR, Roebuck SJ, et al. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice under expressing or overexpressing uncoupling protein 3. Biochem J. 2002; 368, 597-603. DOI: 10.1042/BJ20021077
- Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 2003; 1604: 77-94. DOI: 10.1016/s0005-2728(03)00027-6
- Sweetlove LJ, Lytovchenko A, Morgan M, NunesNesi A, Taylor NL, Baxter CJ, et al. Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci. 2006; 103: 19587-19592. DOI: https://doi.org/10.1073/pnas.0607751103
- Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol. 2000; 35: 811-820. DOI: 10.1016/s0531-5565(00)00135-2
- Martin J, Ajit SD, Shona M, Jason R. Treberg, Martin DB. Mitochondrial proton and electron leaks. Essays Biochem. 2010; 47: 53-67. DOI: 10.1042/bse0470053
- Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005; 392: 353-562. DOI: 10.1042/BJ20050890
- Brand MD. The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans. 2005; 33: 897-904. DOI: 10.1042/BST0330897
- Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ. Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J. 2003; 376: 741-748. DOI: https://doi.org/10.1042/bj20030984
- Hulbert AJ, Else PL. Membranes and the setting of energy demand. J Exp Biol. 2005; 208: 1593-1599. DOI: 10.1242/jeb.01482
- Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005; 392: 353-362. DOI: 10.1042/BJ20050890
- Stuart JA, Cadenas S, Jekabsons MB, Roussel D, Brand MD. Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta. 2001; 1504: 144-158. DOI: https://doi.org/10.1016/S0005-2728(00)00243-7
- Pebay PE, Dahout GC, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxy atractyloside. Nature. 2003; 426: 39-44. DOI: 10.1038/nature02056
- Robinson AJ, Overy C, Kunji ER. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci. 2008; 105: 17766-17771. DOI: https://doi.org/10.1073/pnas.0809580105
- Roussel D, Harding M, Runswick MJ, Walker JE, Brand MD. Does any yeast mitochondrial carrier have a native uncoupling protein function? J Bioenerg Biomembr. 2002; 34: 165-176. DOI: 10.1023/a:1016027302232
- Parker N, Crichton PG, Vidal-Puig AJ, Brand MD. Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. J Bioenerg Biomembr. 2009; 41: 335-342. DOI: 10.1007/s10863-009-9232-8
- Shabalina IG, Ost M, Petrovic N, Vrbacky M, Nedergaard J, Cannon B. Uncoupling protein-1 is not leaky. Biochim Biophys Acta. 2010; 1797: 773-784. DOI: 10.1016/j.bbabio.2010.04.007
- Parker N, Vidal PA, Brand MD. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Biosci Rep. 2008; 28: 83-88. DOI: 10.1042/BSR20080002
- Azzu V, Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci. 2010; 35: 298-307. DOI: 10.1016/j.tibs.2009.11.001
- Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, et al. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. J Surg Res. 2011; 165: 5-14. DOI: 10.1016/j.jss.2010.09.018
- Nadtochiy SM, Tompkins AJ, Brookes PS. Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: Implications for pathology and cardio-protection. Biochem J. 2006; 395: 611-618. DOI: 10.1042/bj20051927
- Hill BG, Dranka BP, Zou L, Chatham JC, Darley-Usmar VM. Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem J. 2009; 424: 99-107. DOI: 10.1042/BJ20090934
- Brookes PS. Mitochondrial H (+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005; 38: 12-23. DOI: 10.1016/j.freeradbiomed.2004.10.016
- Ganote CE, Armstrong SC. Effects of CCCP-induced mitochondrial uncoupling and cyclosporinE on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol. 2003; 35: 749-759. DOI: 10.1016/s0022-2828(03)00114-7
- Speakman JR, Talbot DA, Selman C, Smart S, McLaren JS, Redman P, et al. Uncoupled and surviving: Individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell. 2004; 3: 87-95. DOI: 10.1111/j.1474-9728.2004.00097.x
- Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004; 53: S110-S118. DOI: 10.2337/diabetes.53.2007.s110
- Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, et al. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002; 415: 96-99. DOI: 10.1038/415096a
- Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000; 26: 435-439. DOI: 10.1038/82565
- Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000; 275: 16258-16266. DOI: 10.1074/jbc.M910179199
- Azzu V, Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci. 2010; 35: 298-307. DOI: 10.1016/j.tibs.2009.11.001
- Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008; 88: 581-609. DOI: 10.1152/physrev.00024.2007
- Hoeks J, Hesselink MK, van Bilsen M, Schaart G, van der Vusse GJ, Saris WH, et al. Differential response of UCP3 to medium versus long chain triacylglycerols; manifestation of a functional adaptation. FEBS Lett. 2003; 555, 631-637. DOI: https://doi.org/10.1016/S0014-5793(03)01343-7
- Sahlin K, Tonkonogy M, Fernstrom M. The leaky mitochondria. Physiology News, 2004; 56: 27-28. DOI: https://doi.org/10.36866/pn.56.27
- Goffart S, von Kleist-Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: Power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res. 2004; 64: 198-207. DOI: https://doi.org/10.1016/j.cardiores.2004.06.030
- Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Rad Biol Med. 2016; 100: 14-31. DOI: 10.1016/j.freeradbiomed.2016.04.001
- Munro D, Treberg JR. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol. 2017; 220: 1170-1180. DOI: 10.1242/jeb.132142
- Jian-Xing X. The Electron Leak Pathways of Mitochondrial Respiratory Chain and its Potential Application in Medical Research. JSM Cell Dev Biol. 2015; 3: DOI: 1014. https://tinyurl.com/y2bkzyws
- Iqbal MD, Cawthon RF, WG Bottje. Lung mitochondrial dysfunction in pulmonary hypertension syndrome I. Site-specific defects in the electron transport chain. Poultry Sci. 2001; 80: 485-495. DOI: 10.1093/ps/80.4.485
- Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free RadicBiol Med 2007; 43: 477-503. DOI:10.1016/j.freeradbiomed.2007.03.034
- Sanz A, Pamplona R, Barja G. Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal. 2006; 8: 582-599. DOI: 10.1089/ars.2006.8.582
- Speakman JR, Talbot DA, Selman C, Smart S, McLaren JS, Redman P, et al. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell. 2004; 3: 87-95. DOI: 10.1111/j.1474-9728.2004.00097.x
- Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell. 2008; 7: 552-560. DOI: 10.1111/j.1474-9726.2008.00407.x
- Andrews ZB, Horvath TL. Uncoupling protein-2 regulates lifespan in mice. Am J Physiol Endocrinol Metab. 2009; 296: E621-E627. DOI: 10.1152/ajpendo.90903.2008
- Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG. ‘Mild uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem. 2007; 101: 1619-1631. DOI: 10.1111/j.1471-4159.2007.04516.x
- Kasumov EA, Kasumov RE, Kasumova IV. Mild depolarization of the inner mitochondrial membrane is a crucial component of the mechano-chemiosmotic mechanism of coupling. J Nov Physiother Phys Rehabil. 2020; 7: 033-035. DOI: 10.17352/2455-5487.000075