Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9032564106

A Review on the Possible Leakage of Electrons through the Electron Transport Chain within Mitochondria

Biology Group    Start Submission

Nafisa Tabassum, Ilora Shabnam Kheya, Syed Abdullah Ibn Asaduzzaman, Syeda Muntaka Maniha, Abrar Hamim Fayz, Amayna Zakaria and Rashed Noor*

Volume1-Issue4
Dates: Received: 2020-08-06 | Accepted: 2020-08-22 | Published: 2020-08-26
Pages: 105-113

Abstract

The finding of electron leakage during the electron transport within the mitochondrial membrane (in eukaryotes) or in the cell membrane of the prokaryotes is an important issue for the accumulation of the Reactive Oxygen Species (ROS) in the cytosol which in turn induce the probable aging of cells. In eukaryotes, mitochondrion is known to be the major site of the ROS generation in different pathological processes which may further cause cell damages as evident through the ischemia-reperfusion (I/R) injury, respiratory diseases, cell apoptosis, and even the onset of cancer. Thus, the mitochondrial leakage and the physiological effect of leaked protons and electrons grow up with future interest in energy metabolism. Current review focused on the physiological impact of electron/ proton leakage particularly in the eukaryotic cells based on the previous reports; emphasized on the prospects of the eukaryotic mitochondrion as a modulator of proton and electron leakage; and finally attempted to assess the regulatory mechanisms of such electron/ proton leakage.

FullText HTML FullText PDF DOI: 10.37871/jels1127


Certificate of Publication




Copyright

© 2020 Tabassum N, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R. A Review on the Possible Leakage of Electrons through the Electron Transport Chain within Mitochondria. J Biomed Res Environ Sci. 2020 Aug 26; 1(4): 105-113. doi: 10.37871/jels1127, Article ID: jels1127


Subject area(s)

References


  1. Kasumov EA, Kasumov RE, Kasumova IV. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energytransforming membranes: A personal perspective. Photosynthesis Research. 2015; 123: 1-22. DOI: 10.1007/s11120-014-0043-3
  2. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013; 6: 19. DOI: 10.1186/1756-8722-6-19
  3. Rich PR, Marechal A. The mitochondrial respiratory chain. Essays Biochem. 2010; 47: 1-23. DOI: 10.1042/bse0470001
  4. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry. 2005; 70: 200-214. DOI: 10.1007/s10541-005-0102-7
  5. Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010; 45: 466-472. DOI: 10.1016/j.exger.2010.01.003
  6. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1-13. DOI: 10.1042/BJ20081386
  7. Lambert AJ, Brand MD. Superoxide production by NADH: Ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J. 2004; 382: 511-517. DOI: 10.1042/BJ20040485
  8. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1-13. DOI: 10.1042/BJ20081386
  9. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci. 2015; 112: 11389-11394. DOI: 10.1073/pnas.1513047112
  10. Brand MD, Pamplona R, Portero-Otin M, Requena JR, Roebuck SJ, et al. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice under expressing or overexpressing uncoupling protein 3. Biochem J. 2002; 368, 597-603. DOI: 10.1042/BJ20021077
  11. Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 2003; 1604: 77-94. DOI: 10.1016/s0005-2728(03)00027-6
  12. Sweetlove LJ, Lytovchenko A, Morgan M, NunesNesi A, Taylor NL, Baxter CJ, et al. Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci. 2006; 103: 19587-19592. DOI: https://doi.org/10.1073/pnas.0607751103
  13. Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol. 2000; 35: 811-820. DOI: 10.1016/s0531-5565(00)00135-2
  14. Martin J, Ajit SD, Shona M, Jason R. Treberg, Martin DB. Mitochondrial proton and electron leaks. Essays Biochem. 2010; 47: 53-67. DOI: 10.1042/bse0470053
  15. Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005; 392: 353-562. DOI: 10.1042/BJ20050890
  16. Brand MD. The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans. 2005; 33: 897-904. DOI: 10.1042/BST0330897
  17. Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ. Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J. 2003; 376: 741-748. DOI: https://doi.org/10.1042/bj20030984
  18. Hulbert AJ, Else PL. Membranes and the setting of energy demand. J Exp Biol. 2005; 208: 1593-1599. DOI: 10.1242/jeb.01482
  19. Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005; 392: 353-362. DOI: 10.1042/BJ20050890
  20. Stuart JA, Cadenas S, Jekabsons MB, Roussel D, Brand MD. Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta. 2001; 1504: 144-158. DOI: https://doi.org/10.1016/S0005-2728(00)00243-7
  21. Pebay PE, Dahout GC, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxy atractyloside. Nature. 2003; 426: 39-44. DOI: 10.1038/nature02056
  22. Robinson AJ, Overy C, Kunji ER. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci. 2008; 105: 17766-17771. DOI: https://doi.org/10.1073/pnas.0809580105
  23. Roussel D, Harding M, Runswick MJ, Walker JE, Brand MD. Does any yeast mitochondrial carrier have a native uncoupling protein function? J Bioenerg Biomembr. 2002; 34: 165-176. DOI: 10.1023/a:1016027302232
  24. Parker N, Crichton PG, Vidal-Puig AJ, Brand MD. Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. J Bioenerg Biomembr. 2009; 41: 335-342. DOI: 10.1007/s10863-009-9232-8
  25. Shabalina IG, Ost M, Petrovic N, Vrbacky M, Nedergaard J, Cannon B. Uncoupling protein-1 is not leaky. Biochim Biophys Acta. 2010; 1797: 773-784. DOI: 10.1016/j.bbabio.2010.04.007
  26. Parker N, Vidal PA, Brand MD. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Biosci Rep. 2008; 28: 83-88. DOI: 10.1042/BSR20080002
  27. Azzu V, Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci. 2010; 35: 298-307. DOI: 10.1016/j.tibs.2009.11.001
  28. Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, et al. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. J Surg Res. 2011; 165: 5-14. DOI: 10.1016/j.jss.2010.09.018
  29. Nadtochiy SM, Tompkins AJ, Brookes PS. Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: Implications for pathology and cardio-protection. Biochem J. 2006; 395: 611-618. DOI: 10.1042/bj20051927
  30. Hill BG, Dranka BP, Zou L, Chatham JC, Darley-Usmar VM. Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem J. 2009; 424: 99-107. DOI: 10.1042/BJ20090934
  31. Brookes PS. Mitochondrial H (+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005; 38: 12-23. DOI: 10.1016/j.freeradbiomed.2004.10.016
  32. Ganote CE, Armstrong SC. Effects of CCCP-induced mitochondrial uncoupling and cyclosporinE on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol. 2003; 35: 749-759. DOI: 10.1016/s0022-2828(03)00114-7
  33. Speakman JR, Talbot DA, Selman C, Smart S, McLaren JS, Redman P, et al. Uncoupled and surviving: Individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell. 2004; 3: 87-95. DOI: 10.1111/j.1474-9728.2004.00097.x
  34. Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004; 53: S110-S118. DOI: 10.2337/diabetes.53.2007.s110
  35. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, et al. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002; 415: 96-99. DOI: 10.1038/415096a
  36. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000; 26: 435-439. DOI: 10.1038/82565
  37. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000; 275: 16258-16266. DOI: 10.1074/jbc.M910179199
  38. Azzu V, Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci. 2010; 35: 298-307. DOI: 10.1016/j.tibs.2009.11.001
  39. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008; 88: 581-609. DOI: 10.1152/physrev.00024.2007
  40. Hoeks J, Hesselink MK, van Bilsen M, Schaart G, van der Vusse GJ, Saris WH, et al. Differential response of UCP3 to medium versus long chain triacylglycerols; manifestation of a functional adaptation. FEBS Lett. 2003; 555, 631-637. DOI: https://doi.org/10.1016/S0014-5793(03)01343-7
  41. Sahlin K, Tonkonogy M, Fernstrom M. The leaky mitochondria. Physiology News, 2004; 56: 27-28. DOI: https://doi.org/10.36866/pn.56.27
  42. Goffart S, von Kleist-Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: Power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res. 2004; 64: 198-207. DOI: https://doi.org/10.1016/j.cardiores.2004.06.030
  43. Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Rad Biol Med. 2016; 100: 14-31. DOI: 10.1016/j.freeradbiomed.2016.04.001
  44. Munro D, Treberg JR. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol. 2017; 220: 1170-1180. DOI: 10.1242/jeb.132142
  45. Jian-Xing X. The Electron Leak Pathways of Mitochondrial Respiratory Chain and its Potential Application in Medical Research. JSM Cell Dev Biol. 2015; 3: DOI: 1014. https://tinyurl.com/y2bkzyws
  46. Iqbal MD, Cawthon RF, WG Bottje. Lung mitochondrial dysfunction in pulmonary hypertension syndrome I. Site-specific defects in the electron transport chain. Poultry Sci. 2001; 80: 485-495. DOI: 10.1093/ps/80.4.485
  47. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free RadicBiol Med 2007; 43: 477-503. DOI:10.1016/j.freeradbiomed.2007.03.034
  48. Sanz A, Pamplona R, Barja G. Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal. 2006; 8: 582-599. DOI: 10.1089/ars.2006.8.582
  49. Speakman JR, Talbot DA, Selman C, Smart S, McLaren JS, Redman P, et al. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell. 2004; 3: 87-95. DOI: 10.1111/j.1474-9728.2004.00097.x
  50. Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell. 2008; 7: 552-560. DOI: 10.1111/j.1474-9726.2008.00407.x
  51. Andrews ZB, Horvath TL. Uncoupling protein-2 regulates lifespan in mice. Am J Physiol Endocrinol Metab. 2009; 296: E621-E627. DOI: 10.1152/ajpendo.90903.2008
  52. Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG. ‘Mild uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem. 2007; 101: 1619-1631. DOI: 10.1111/j.1471-4159.2007.04516.x
  53. Kasumov EA, Kasumov RE, Kasumova IV. Mild depolarization of the inner mitochondrial membrane is a crucial component of the mechano-chemiosmotic mechanism of coupling. J Nov Physiother Phys Rehabil. 2020; 7: 033-035. DOI: 10.17352/2455-5487.000075


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search