Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 8657511183

A Review: Artemisinin-Based Combination Therapies [ACTs] and K13 Polymorphism

Biology Group    Start Submission

Aqeel Ahmad and Sultan Ahmad*

Volume1-Issue4
Dates: Received: 2020-07-27 | Accepted: 2020-08-12 | Published: 2020-08-13
Pages: 088-091

Abstract

Malaria is caused by four plasmodium species in humans (P. falciparum, P. vivax, P. malariae and P. ovale) which spread from one person to another via the bite of female Anopheles mosquito. P. falciparum causes most deaths from malaria [1] and is most prevalent on the African continent whereas P. vivax has a wider geographical distribution [2]. According to the latest WHO estimates, released in December 2015, there were 214 million cases of malaria in 2015 and 438,000 deaths [3]. Existing strategies to control malaria include vector control, chemoprevention and case management [4]. Without a fruitful antibody that would offer security against malaria, we have to depend on anti-malarial prescription to treat just as lessen the odds of getting the disease [5-8]. Artemisinin in mix with other moderate acting medications is suggested for the treatment of P. falciparum [9,10].

FullText HTML FullText PDF DOI: 10.37871/jels1124


Certificate of Publication




Copyright

© 2020 Ahmad A, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ahmad A, Ahmad S. A Review: Artemisinin-Based Combination Therapies [ACTs] and K13 Polymorphism. J Biomed Res Environ Sci. 2020 Aug 13; 1(4): 088-091. doi: 10.37871/jels1124, Article ID: jels1124


Subject area(s)

University/Institute

References


  1. Siddiqui FA. Malaria control and elimination: How far we are: An Opinion Article. J Biom Biostat. 2016; 7: 321. DOI: 10.4172/2155-6180.1000321
  2. Ahmad S, Ahmad A, Aziz A. A path towards eliminating malaria: Drug resistance a major roadblock? Sci J Biol. 2020; 3: 001-009. DOI: https://dx.doi.org/10.37871/sjb.id16
  3. WHO. 2018. Status report on artemisinin resistance and ACT efficacy. 2019. https://tinyurl.com/y45gkx8r
  4. RTS malaria candidate vaccine reduces malaria by approximately one-third in African infants”. Malariavaccine org. Malaria Vaccine Initiative Path. 2013. https://tinyurl.com/yyhhhlof
  5. Siddiqui FA, Dhawan S, Singh S, Singh B, Gupta P, Pandey A, et al. A thrombospondin structural repeat containing rhoptry protein from Plasmodium falciparum mediates erythrocyte invasion. Cell Microbiol. 2013; 15: 1341-1356. DOI: https://doi.org/10.1111/cmi.12118
  6. Pandey AK, Reddy KS, Sahar T, Gupta S, Singh H, Reddy EJ, et al. Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit straintranscending parasite-neutralizing antibodies. Infect Immun. 2013; 81: 441-451. DOI: 10.1128/IAI.01107-12
  7. Pandey AK, Reddy KS, Sahar T, Gupta S, Singh H, Reddy EJ, et al. Identifcation of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain transcending parasite-neutralizing antibodies. Infect Immun. 2013; 81: 441-451. DOI: 10.1128/IAI.01107-12
  8. Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. JCB. 2012; 198: 961-971. DOI: https://doi.org/10.1083/jcb.201206112
  9. Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J. 2012; 11: 14. DOI: 10.1186/1475-2875-11-14.
  10. Liang X, Hart KJ, Dong G, Siddiqui FA, Sebastian A, Li X, et al. Puf3 participates in ribosomal biogenesis in malaria parasites. J Cell Sci. 2018; 131: jcs212597. DOI: https://doi.org/10.1242/jcs.212597.
  11. Brashear AM, Roobsoong W, Siddiqui FA, Nguitragool W, Sattabongkot J, Lopez-Uribe MM, et al. A glance of the blood stage transcriptome of a Southeast Asian Plasmodium ovale isolate. PLoS Negl Trop Dis. 2019; 13: e0007850. DOI: https://doi.org/10.1371/journal.pntd.0007850
  12. Dawn A, Singh S, More KR, Siddiqui FA, Pachikara N, Ramdani G, et al. The central role of cAMP in regulating Plasmodium falciparum merozoite invasion of human erythrocytes. PLoS Pathog. 2014; 10: e1004520. DOI: https://doi.org/10.1371/journal.ppat.1004520
  13. Alam MM, Solyakov L, Bottrill AR, Flueck C, Siddiqui FA, Singh S, et al. Phosphoproteomics reveals malaria parasite
  14. Protein Kinase G as a signalling hub regulating egress and invasion. Nat. Commun. 2015; 6,
  15. 7285. https://tinyurl.com/y39c5cv8
  16. McNamara CW, Lee MC, Lim CS, Lim SH, Roland J, Simon O, et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature. 2013; 504: 248-253. DOI: 10.1038/nature12782.
  17. Hati S, Madurkar SM, Bathula C, Thulluri C, Agarwal R, Siddiqui FA, et al. Design, synthesis and biological evaluation of small molecules as potent glucosidase inhibitors. Eur J Med Chem. 2015; 100: 188-196. DOI: https://doi.org/10.1016/j.ejmech.2015.04.059 PMID:26087029
  18. Hassett MR, Sternberg AR, Roepe PD. Inhibition of human class I vs class III phosphatidylinositol 3’-kinases. Biochemistry. 2017; 56: 4326-4334. DOI: https://doi.org/10.1021/acs.biochem.7b00413.
  19. Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O, Mok S, et al. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoSPathog. 2018; 14: e1006930. DOI: https:// doi.org/10.1371/journal.ppat.1006930.
  20. Breglio KF, Amato R, Eastman R, Lim P, Sa JM, Guha R, et al. A single nucleotide polymorphism in the Plasmodium falciparum atg18 gene associates with artemisinin resistance and confers enhanced parasite survival under nutrient
  21. deprivation. Malar J. 2018; 17: 391. DOI: https://doi.org/10.1186/s12936-018-2532-x.
  22. Demas AR, Sharma AI, Wong W, Early AM, Redmond S, Bopp S, et al. Mutations in Plasmodium falciparum actinbinding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci. 2018; 115: 12799-12804. DOI: https://doi .org/10.1073/pnas.1812317115.
  23. Henriques G, van Schalkwyk DA, Burrow R, Warhurst DC, Thompson E, Baker DA, et al. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine. Antimicrob Agents Chemother. 2015; 59: 2540-2547. DOI: https://doi.org/10.1128/AAC .04067-14.
  24. Siddiqui FA, Cabrera M, Wang M, Brashear A, Kemirembe K, Wang Z,Miao J, et al. Plasmodium falciparum falcipain-2a polymorphisms in Southeast Asia and their association with artemisinin resistance. J Infect Dis. 2018; 218: 434-442. DOI: https://doi.org/10.1093/infdis/jiy188.
  25. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014; 505: 50. https://tinyurl.com/y253zj8p
  26. Siddiqui FA, Boonhok R, Cabrera M, Mbenda HGN, Wang M, Min H, et al. Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance. Mbio: 2020; 11: e01134-1119. DOI: https://doi.org/10.1128/mBio.01134-19 PMID:32098812
  27. Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci USA. 2013; 110: 240-245. DOI: https://doi.org/10.1073/pnas.1211205110.
  28. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: A cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015; 15: 415-421. DOI: https://doi.org/10.1016/S1473 -3099(15)70032-0.
  29. Zhang J, Li N, Siddiqui FA, Xu S, Geng J, Zhang J, et al. In vitro susceptibility of Plasmodium falciparum isolates from the China-Myanmar border area to artemisinins and correlation with K13 mutations. Int J for Parasitol Drugs Drug Resist. 2019; 10: 20-27. DOI: 10.1016/j.ijpddr.2019.04.002
  30. Zhao Y, Ziling Liu, Soe MT, Wang L, Soe TN, Wei H, et al. Genetic Variations Associated with Drug Resistance Markers in Asymptomatic Plasmodium falciparum Infections in Myanmar. Genes. 2019; 10: 692. DOI:
  31. 10.3390/genes10090692
  32. Wang M, Siddiqui FA, Fan Q, Luo E, Cao Y, Cui L. Limited genetic diversity in the PvK12 Kelch protein in Plasmodium vivax isolates from Southeast Asia. Malar J 2016; 15: 537. DOI: https://doi.org/10.1186/s12936-016-1583-0
  33. Mbenda HGN, Zeng W, Bai Y, Siddiqui FA, Yang Z, Cui L. Genetic diversity of the Plasmodium vivax phosphatidylinositol 3-kinase gene in two regions of the China-Myanmar border. Infect Genet Evol. 2018; 61: 45-52. https://tinyurl.com/yyhncyo2
  34. Li J, Zhang J, Li Q, Hu Y, Ruan Y, Tao Z, et al. Ex vivo susceptibilities of Plasmodium vivax isolates from the China-Myanmar border to antimalarial drugs and association with polymorphisms in Pvmdr1 and Pvcrt-o genes. PLOS Neglected Tropical Diseases. 2020; 14: e0008255. DOI: https://doi.org/10.1016/j.meegid.2018.02.018
  35. Mbenda HGN, Wang M, Guo J, Siddiqui FA, Hu Y, Yang Z, et al. Evolution of the Plasmodium vivax multidrug resistance 1 gene in the Greater Mekong Subregion during malaria elimination. Parasites & vectors. 2020; 13: 67. DOI: 10.1186/s13071-020-3934-5


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search