Covid-19 Research

Covid-19 Pandemic-Insights and Challenges

Start Submission

The 2019 Novel Coronavirus (2019-nCoV) outbreak affected a large number of deaths with millions of confirmed cases worldwide. Coronavirus Disease (COVID-19) is associated with respiratory illness that lead to severe pneumonia and Acute Respiratory Distress Syndrome (ARDS). Although related to the Severe Acute Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS), Covid-19 shows some unique pathogenetic, epidemiological and clinical features. On the basis of the phylogenetic relationship as well as genomic structures, the Covid-19 belongs to genera Betacoronavirus. Human Betacoronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) have shared similarities, yet differences also in their genomic and phenotypic level that influence the pathogenesis. To gain knowledge regarding the pathophysiology and virulence of the Covid-19 virus, it is absolutely necessary to understand its genetic makeup, transmission, virulence factors, risk factors, diagnosis, clinical presentations, outcome predictions, management of risk factors and ways to control the disease thus providing an insight to the current or future treatment and management protocols. To provide a review of the differences in pathogenesis, epidemiology and clinical features of Covid-19, its transmission and replication dynamics, genome organization, current clinical trials and vaccine development strategies, Immunoinformatics, diagnostics and ways to control the pandemic, inorder to raise an increasing awareness, both to the public and for scientific perspectives.

Lakshmi S*, Shehna S, Vimal S, Midhu GV, Shiny DV, Sreelekshmi S, Reshmi R and Abi SA
,,
Volume1-Issue4 | Published: 2020-08-12

FullText HTML FullText PDF

References


  1. Catrin S, Zaid A, Niamh ON, Mehdi K, Ahmed K, Riaz A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76: 71-76. DOI: 10.1016/j.ijsu.2020.02.034
  2. Li F. Structure, function and evolution of coronavirus spike proteins. Annu Rev Virol. 2016; 3: 237-261. DOI: 10.1146/annurev-virology-110615-042301
  3. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev. 2009; 7: 226-236. DOI: 10.1038/nrmicro2090
  4. Zhou Y, Jiang S, Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev Vaccines. 2018; 17: 677-686. DOI: 10.1080/14760584.2018.1506702
  5. Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of molecular biology. 1981; 147: 195-197. DOI: 10.1016/0022-2836(81)90087-5.
  6. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC bioinformatics. 2007; 8: 424. DOI: 10.1186/1471-2105-8-424.
  7. Dos S FR, Buhler S, Nunes JM, Bitarello BD, França GS, Meyer D, et al. HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms. Immunogenetics. 2015; 67: 651-663. DOI: 10.1007/s00251-015-0875-9
  8. Bhasin M, Raghava GP. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine. 2004; 22: 3195-3204. DOI: 10.1016/j.vaccine.2004.02.005.
  9. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. The Journal of Immunology. 2017; 199: 3360-3368. DOI: 10.4049/jimmunol.1700893
  10. Alsahafi AJ, Cheng AC. The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012-2015. International Journal of Infectious Diseases. 2014; 45: 1-4. DOI: https://doi.org/10.1016/j.ijid.2016.02.004
  11. World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome [SARS]. 2003. https://tinyurl.com/y4onf6v9
  12. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, Van Amerongen G, Van Riel, et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. The Lancet. 2003; 362: 263-270. DOI: 10.1097/01.idc.0000104903.16995.a8
  13. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet. 2003; 361: 1319-1325. DOI: 10.1016/s0140-6736(03)13077-2.
  14. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences. 2005; 102:14040-1405. DOI: 10.1073/pnas.0506735102.
  15. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310: 676-679. DOI: 10.1126/science.1118391.
  16. Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus research. 2008; 133: 74-87. DOI: 10.1016/j.virusres.2007.03.012.
  17. Han HJ, Wen HL, Zhou CM, Chen FF, Luo LM, Liu JW, et al. Bats as reservoirs of severe emerging infectious diseases. Virus research. 2015; 205: 1-6. DOI: 10.1016/j.virusres.2015.05.006.
  18. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020; 24: 91-98. DOI: https://doi.org/10.1016/j.jare.2020.03.005
  19. World Health Organization. Summary table of SARS cases by country, 1 November 2002-7 August 2003. Weekly Epidemiological Record. 2003; 78: 310-311. https://tinyurl.com/y4qyzfzu
  20. Sharif-Yakan A, Kanj SS. Emergence of MERS-CoV in the Middle East: origins, transmission, treatment, and perspectives. PLoS Pathog. 2014; 10: e1004457. DOI: 10.1371/journal.ppat.1004457
  21. World Health Organization. Managing epidemics: key facts about major deadly diseases. World Health Organization; 2018. https://tinyurl.com/y2g5o8st
  22. Al-Abdely HM, Midgley CM, Alkhamis AM, Abedi GR, Lu X, Binder AM, et al. Middle East respiratory syndrome coronavirus infection dynamics and antibody responses among clinically diverse patients, Saudi Arabia. Emerging infectious diseases. 2019; 25: 753. DOI: 10.3201/eid2504.181595
  23. Fehr AR, Channappanavar R, Perlman S. Middle East respiratory syndrome: Emergence of a pathogenic human coronavirus. Annual review of medicine. 2017; 68: 387-399. DOI: 10.1146/annurev-med-051215-031152
  24. Azhar EI, Hui DS, Memish ZA, Drosten C, Zumla A. The Middle East respiratory syndrome [MERS]. Infectious Disease Clinics. 2019; 33: 891-905. DOI: doi.org/10.1016/j.idc.2019.08.001
  25. Huang C, Wang Y, Li X, Lili Ren, Jianping Zhao, Yi Hu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497-506. DOI: 10.1016/S0140-6736(20)30183-5
  26. Russell TW, Hellewell J, Jarvis CI, Van Zandvoort K, Abbott S, Ratnayake R, et al. CMMID COVID-19 working group. Estimating the infection and case fatality ratio for Coronavirus Disease [COVID-19] using age-adjusted data from the outbreak on the Diamond Princess Cruise ship, February 2020. Eurosurveillance. 2020; 25: 2000256. DOI: 10.2807/1560-7917.ES.2020.25.12.2000256.
  27. Chan JFW, Kok KH, Zhuc. Kelvin Kai-Wang To, Shuofeng Yuan, Kwok-Yung Yuen. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes and Infections 2020. 9; 1: 221-236. DOI: 10.1080/22221751.2020.1719902
  28. Lu R, Zhao X, Li J. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395: 565-574. https://tinyurl.com/y3ogn86x
  29. Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel Coronavirus [COVID-19]. International Journal of Surgery. 2020. DOI: 10.1016/j.ijsu.2020.02.034
  30. Aslam S, Mehra MR. COVID-19: Yet another coronavirus challenge in transplantation. The Journal of Heart and Lung Transplantation. 2020; 39: 408-409. DOI: 10.1016/j.healun.2020.03.007
  31. Chu DK, Pan Y, Cheng SM, Hui KP, Krishnan P, Liu Y, et al. Molecular diagnosis of a novel coronavirus [2019-nCoV] causing an outbreak of pneumonia. Clinical chemistry. 2020; 66: 549-55. DOI: https://doi.org/10.1093/clinchem/hvaa029
  32. Holshue ML, DeBolt C, Lindquist S, Kathy H Lofy, John Wiesman, Hollianne, et al. First Case of 2019 Novel Coronavirus in the United States. The New England Journal of Medicine. 2020: 929-936. DOI: 10.1056/NEJMoa2001191.
  33. Hossain I, Khan MH, Rahman MS, Mullick AR, Aktaruzzaman MM. The epidemiological characteristics of an outbreak of 2019 novel Coronavirus Diseases [COVID-19] in Bangladesh: A descriptive study. Journal of Medical Science and Clinical Research. 2020; 8: 145-151. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.003.
  34. Zhang R, Liu H, Li F, Zhang B, Liu Q, Xiangwen Li, et al. Transmission and epidemiological characteristics of Novel Coronavirus [2019-nCoV]-Infected Pneumonia [NCIP]: Preliminary evidence obtained in comparison with 2003-SARS. MedRxiv. 2020. DOI: 10.1101/2020.01.30.20019836
  35. Liu RZ, Li F, Zhang B, Liu Q, Li X, Luo L, et al. Transmission and epidemiological characteristics of Novel Coronavirus [2019-nCoV]-Infected Pneumonia [NCIP]: Preliminary evidence obtained in comparison with 2003-SARS. DOI: 10.1101/2020.01.30.20019836
  36. Baruah V, Bose S. Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. Journal of medical virology. 2020; 92: 495-500. DOI: https://doi.org/10.1002/jmv.25698
  37. Wen J, Aston J, Liu X, Ying T. Effects of misleading media coverage on public health crisis: A case of the 2019 novel coronavirus outbreak in China. Anatolia. 2020; 31: 331-336. DOI: 10.1080/13032917.2020.1730621
  38. Khatri P, Singh S, Belani NK, Leng YY, Lohan R, Wei LY, et al. YouTube as source of information on 2019 novel coronavirus outbreak: a cross sectional study of English and Mandarin content. Travel medicine and infectious disease. 2020; 101636. DOI: 10.1016/j.tmaid.2020.101636.
  39. Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel Coronavirus [2019-nCoV] patients. Canadian Journal of Anesthesia/Journal canadien d’anesthésie. 2020; 1-9. DOI: 10.1007/s12630-020-01591-x
  40. Chen W, Huang Y. To protect health care workers better, to save more lives with COVID-19. Anesthesia and Analgesia. 2020. DOI: 10.1213/ANE.0000000000004834
  41. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus disease 2019 [COVID-19]: A perspective from China. Radiology. 2020; 296: E15-E25. DOI: 10.1148/radiol.2020200490.
  42. Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health. 2020; 8: e488-e496. DOI: 10.1016/S2214-109X(20)30074-7.
  43. Wang X, Chen S, Tan F, Gao GF. Recent Trends and Challenges with COVID-19-Africa, April 4, 2020. China CDC Weekly. 2020; 2: 365-369. DOI: 10.46234/ccdcw2020.094
  44. Badrfam R, Zandifar A. Coronavirus disease 2019 in Iran: The need for more attention to primary health care. Public Health. 2020; 182: 187. DOI: 10.1016/j.puhe.2020.03.010
  45. Song P, Karako T. COVID-19: Real-time dissemination of scientific information to fight a public health emergency of international concern. Bioscience trends. 2020; 14: 1-2. DOI: 10.5582/bst.2020.01056
  46. Majumder MS, Mandl KD. Early in the epidemic: Impact of preprints on global discourse about COVID-19 transmissibility. The Lancet Global Health. 2020; 8: e627-630. DOI: https://doi.org/10.1016/S2214-109X(20)30113-3
  47. Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sciences. 2020; 256: 117956. DOI: 10.1016/j.lfs.2020.117956
  48. National Institutes of Health. NIH clinical trial of investigational vaccine for COVID-19 begins. https://tinyurl.com/wcyl27j
  49. Daughton CG. Natural experiment concept to accelerate the Re-purposing of existing therapeutics for Covid-19. Global Epidemiology. 2020; 2: 100026. DOI: https://doi.org/10.1016/j.gloepi.2020.100026
  50. Dawoud D. Emerging from the other end: Key measures for a successful COVID-19 lockdown exit strategy and the potential contribution of pharmacists. Research in Social and Administrative Pharmacy. 2020. DOI: 10.1016/j.sapharm.2020.05.011
  51. Dheda K, Jaumdally S, Davids M, Chang JW, Gina P, Pooran A, et al. Diagnosis of COVID-19: Considerations, controversies and challenges in South Africa. Wits Journal of Clinical Medicine. 2020; 2: 3-10. DOI: 10.18772/26180197.2020.v2nSIa1
  52. Zhao S, Zhuang Z, Cao P, Ran J, Gao D, Lou Y, et al. Quantifying the association between domestic travel and the exportation of novel Coronavirus [2019-nCoV] cases from Wuhan, China in 2020: A correlational analysis. Journal of travel medicine. 2020; 27. DOI: https://doi.org/10.1093/jtm/taaa022
  53. Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. BioRxiv. 2020. DOI: https://doi.org/10.1101/2020.03.13.990226
  54. Patel A, Jernigan DB, 2019-nCoV CDC Response Team. Initial public health response and interim clinical guidance for the 2019 Novel Coronavirus Outbreak - United States, December 31, 2019-February 4, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69: 140-146. https://tinyurl.com/yx6xp3xb
  55. Russell TW, Hellewell J, Jarvis CI, Van-Zandvoort K, Abbott S, Ratnayake R, et al. Estimating the infection and case fatality ratio for COVID-19 using age-adjusted data from the outbreak on the Diamond Princess cruise ship. medRxiv. 2020. DOI: 10.2807/1560-7917.ES.2020.25.12.2000256
  56. Wang W, Xu Y, Gao R. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020; 323: 1843-1844. DOI: 10.1001/jama.2020.3786
  57. To KK, Tsang OT, Leung WS. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect Dis. 2020; 20: 565-574. DOI: https://doi.org/10.1016/S1473-3099(20)30196-1
  58. Ong SW, Tan YK, Chia PY, Lee TH, Ng OT, Wong MS, et al. Air, surface environmental, and personal protective equipment contamination by severe acute Respiratory Syndrome Coronavirus 2 [SARS-CoV-2] from a symptomatic patient. JAMA. 2020; 323: 1610-1612. DOI:10.1001/jama.2020.3227.
  59. Yu F, Yan L, Wang N, Siyuan Y, Linghang W, Yunxia T et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin Infect Dis. 2020. 71: 793-798. DOI: 10.1093/cid/ciaa345.
  60. Bholane KP. Impact of corona outbreak on global economy. Purakala with ISSN 0971-2143 is an UGC CARE Journal. 2020; 31: 126-133.
  61. Han X, Cao Y, Jiang N, Chen Y, Alwalid O, Zhang X, et al. Novel Coronavirus Pneumonia [COVID-19] progression course in 17 discharged patients: Comparison of clinical and thin-section CT features during recovery. Clinical Infectious Diseases. 2020; 71: 723-731. DOI: https://doi.org/10.1093/cid/ciaa271
  62. Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, Archer DR, et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity. 2000; 13: 129-1241. DOI: 10.1016/s1074-7613(00)00014-5
  63. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochemical and biophysical research communications. 2009; 388: 621-625. DOI: https://doi.org/10.1016/j.bbrc.2009.08.062
  64. Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Reviews Immunology. 2006; 6: 644-658. https://tinyurl.com/yydkrd33
  65. Brown J, Wang H, Hajishengallis GN, Martin M. TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. Journal of dental research. 2011; 90: 417-427. DOI: https://doi.org/10.1177/0022034510381264
  66. Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009; 9: 291-300. DOI: 10.1016/S1473-3099(09)70069-6.
  67. Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F. Modulation of the immune response by Middle East respiratory syndrome coronavirus. J Cell Physiol. 2019; 234: 2143-2151. DOI: 10.1002/jcp.27155.
  68. Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun. 2020; 12: 4-20. DOI: https://doi.org/10.1159/000503030
  69. Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, et al. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS One. 2014; 9: 88716. https://tinyurl.com/yyy77k2a
  70. Jeannette Guamer. Three Emerging Coronavirusers in Two Decades: The Story of SARS, MERS and Now COVID-19. Am J Clin Pathol. 2020. 153: 420-421. DOI: 10.1093/ajcp/aqaa029
  71. Hanuman Singh Dagur, Saurabh Singh Dhakar. Genome Organization of Covid-19 and Emerging Severe Acute Respiratory Syndrome Covid-19 Outbreak: A Pandemic. EJMO. 2020; 4: 107-115. DOI: 10.14744/ejmo.2020.96781
  72. Jasper FWC, Kin HK, Zheng Z, Hin C, Kelvin KWT, Shuofeng Y, et al. Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections. 2020; 9: 221-236. DOI: 10.1080/22221751.2020.1719902.
  73. Yan RG, Qing DC, Zhon SH. Military medical research. 2020; 11: 1-3.
  74. Yu Chen, Qianyun Liu, Deyin Guo. Emerging coronaviruses: Genome structure, replication and pathogenesis. Journel of Medical Viroloy. 2020; 92: 418-423. DOI: 10.1002/jmv.25681
  75. Rozhgar A K, Muhamad S, Mehmet Ozaslan. Genomic characterization of a novel SARS-CoV-2. Elsevier Gene reports 19. 2020; 1-5. DOI: 10.1016/j.genrep.2020.100682
  76. Leila M, Sorayya G. Genotype and Phenotype of COVID-19: Their role in pathogenesis. Journal of Microbiology, Immunology and Infection. 2020; 1-4. DOI: https://doi.org/10.1016/j.jmii.2020.03.022
  77. Lisheng Wang, Yiru Wang, Dawei Ye. Review of the 2019 novel Coronavirus [SARS-CoV-2] based on current evidence. International journal of antimicrobial agents. 2020; 12: 2-3. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105948
  78. Muhammad AS, Suliman K, Abeer K. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020; 24: 93. DOI: https://doi.org/10.1016/j.jare.2020.03.005
  79. Jeong MK, Yoon SC, Hye JJ, Mi SK, Sang HW, Sehee P, et al. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Public Health Res Perspact. 2020; 11: 4-5. DOI: 10.24171/j.phrp.2020.11.1.02
  80. Sasmita PA, Sha M, Yu JW, Yu PM, Rui XY, Qing ZW, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of Coronavirus disease [COVID-19] during the early outbreak period: A scoping review. Infectious Diseases of poverty. 2020; 929: 8-9. DOI: 10.1186/s40249-020-00646-x
  81. World health organization, Coronavirus disease 2019 [COVID-19] Situation Report. 102. https://tinyurl.com/wl8kbzw
  82. Zhu N, Zhang D, Wang W, Li XW, Yang B, Song JD, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733. DOI: 10.1056/NEJMoa2001017
  83. Surveillances, V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases [COVID-19]-China, 2020. China CDC Weekly. 20202; 2: 113-122.
  84. Qun Li, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382: 1199-1207. DOI: 10.1056/nejmoa2001316
  85. Sun J, He WT, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends in Molecular Medicine. 2020; 26: 483-495. DOI: https://doi.org/10.1016/j.molmed.2020.02.008
  86. Wang X, Zhang X, He J. Challenges to the system of reserve medical supplies for public health emergencies: Reflections on the outbreak of the severe acute Respiratory Syndrome Coronavirus 2 [SARS-CoV-2] epidemic in China. Bioscience trends. 2020; 14: 3-8. DOI: 10.5582/bst.2020.01043.
  87. Habibi R, Burci GL, de Campos TC, Chirwa D, Cina M, Dagron S, et al. Do not violate the International Health Regulations during the COVID-19 outbreak. The Lancet. 2020; 395: 664-666. DOI: https://doi.org/10.1016/S0140-6736(20)30373-1
  88. Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, et al. The epidemiology and clinical information about COVID-19. European Journal of Clinical Microbiology & Infectious Diseases. 2020; 1-9. DOI: 10.1007/s10096-020-03874-z
  89. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020; 12: 372. DOI: 10.3390/v12040372.
  90. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of medicine. 2020; 12: 1-8. DOI: 10.1007/s11684-020-0754-0
  91. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine. 2020; 8: 420-422. DOI: https://doi.org/10.1016/S2213-2600(20)30076-X
  92. Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: A review of virus–host interactions. Diseases. 2016; 4: 26. DOI: 10.3390/diseases4030026
  93. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367: 1260-1263. DOI: 10.1126/science.abb2507.
  94. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular immunology. 2020; 11: 1-3. DOI: 10.1038/s41423-020-0374-2
  95. Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. International journal for parasitology. 2000; 30: 1395-1405. DOI: https://doi.org/10.1016/S0020-7519(00)00141-7
  96. Bannister-Tyrrell M, Meyer A, Faverjon C, Cameron A. Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. MedRxiv. 2020.
  97. Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss medical weekly. 2020; 150. DOI: https://doi.org/10.4414/smw.2020.20224
  98. Maboloc CR, Baratipour M, Parahakaran S, D’Astous M. Eubios Journal of Asian and International Bioethics. 2020; 30: 3.
  99. Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, et al. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Science of the Total Environment. 2020; 729: 139051. DOI: https://doi.org/10.1016/j.scitotenv.2020.139051
  100. Chin A, Chu J, Perera M, Hui K, Yen HL, Chan M, et al. Stability of SARS-CoV-2 in different environmental conditions. medRxiv. 2020. DOI: https://doi.org/10.1101/2020.03.15.20036673
  101. Sun Z, Thilakavathy K, Kumar SS, He G, Liu SV. Potential factors influencing repeated SARS outbreaks in China. International Journal of Environmental Research and Public Health. 2020; 17: 1633. DOI: 10.3390/ijerph17051633.
  102. Rocklov J, Sjodin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: Estimating the epidemic potential and effectiveness of public health countermeasures. Journal of travel medicine. 2020; 27: taaa030. DOI: 10.1093/jtm/taaa030.
  103. Dooley B, Rich M. Cruise ship’s coronavirus outbreak leaves crew nowhere to hide. New York Times, 2020. https://tinyurl.com/tnbptn2
  104. Chatterjee P, Nagi N, Agarwal A, Das B, Banerjee S, Sarkar S, et al. The 2019 novel Coronavirus disease [COVID-19] pandemic: A review of the current evidence. Indian Journal of Medical Research. 2020; 151: 147. DOI: 10.4103/ijmr.IJMR_519_20.
  105. Heymann DL, Shindo N. COVID-19: What is next for public health? The Lancet. 2020; 395: 542-545. DOI: https://doi.org/10.1016/S0140-6736(20)30374-3
  106. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. Jama. 2020; 323: 1406-1407. DOI: 10.1001/jama.2020.2565
  107. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020; 323: 1061-1069. DOI: 10.1001/jama.2020.1585
  108. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus disease 2019 [COVID-19] outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020; 323: 1239-1242. DOI: 10.1001/jama.2020.2648.
  109. Rando HM, Greene CS, Robson MP, Boca SM, Wellhausen N, Lordan R, et al. SARS-CoV-2 and COVID-19: An evolving review of diagnostics and therapeutics. Manubot. 2020.
  110. Leite P, Armada MR. Bond fund performance during recessions and expansions: Empirical evidence from a small market. International Review of Finance. 2017; 17: 163-1670. DOI: https://doi.org/10.1111/irfi.12098
  111. Wang M, Xu HF, Zhang ZB, Zou XZ, Gao Y, Liu XN, et al. Analysis on the risk factors of severe acute respiratory syndromes coronavirus infection in workers from animal markets. 2004; 25: 503. DOI: https://doi.org/10.1111/irfi.12098
  112. Kuldeep DA, Khan SB, Ruchi TC, Maryam DD, Yashpal SME, Karam PS, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human vaccines & immunotherapeutics. 2020; 1-7. DOI: 10.1080/21645515.2020.1735227
  113. Drosten C, Gunther S, Preiser W, Van Der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003; 348: 1967-1976. DOI: 10.1056/NEJMoa030747
  114. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. Growth kinetics of SARS-coronavirus in Vero E6 cells. Biochemical and biophysical research communications. 2005; 329: 1147-1151. DOI: 10.1016/j.bbrc.2005.02.085
  115. Saif LJ. Animal coronavirus vaccines: Lessons for SARS. Developments in biologicals. 2004; 119: 129-140. https://tinyurl.com/y48yv7m7
  116. Petersen NC, Boyle JF. Immunologic phenomena in the effusive form of feline infectious peritonitis. American Journal of Veterinary Research. 1980; 41: 868-876. https://tinyurl.com/yye44odk
  117. Graham RL, Donaldson EF, Baric RS. A decade after SARS: Strategies for controlling emerging coronaviruses. Nature Reviews Microbiology. 2013; 11: 836-848. https://tinyurl.com/y4je9c3j
  118. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004; 428: 561-564. DOI: 10.1038/nature02463.
  119. Jiang S, He Y, Liu S. SARS vaccine development. Emerging infectious diseases. 2005; 11: 1016. DOI: 10.3201/1107.050219.
  120. Gillim RL, Subbarao K. Emerging respiratory viruses: challenges and vaccine strategies. Clinical microbiology reviews. 2006; 19: 614-636. DOI: 10.1128/CMR.00005-06
  121. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Bioscience trends. 2020; 14: 64-68. DOI: 10.5582/bst.2020.01030
  122. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel Coronavirus [2019-nCoV] In vitro. Cell research. 2020; 30: 269-271. DOI: 10.1038/s41422-020-0282-0
  123. Smith R. Medical journals are an extension of the marketing arm of pharmaceutical companies. PLoS med. 2005; 2: e138. DOI: 10.1371/journal.pmed.0020138
  124. JJ VE. COVID-19: A Brief overview of the discovery clinical trial. Pharmaceuticals [Basel, Switzerland]. 2020; 13. DOI: 10.3390/ph13040065
  125. Abbas I. Hybrid research simulation modeling for making decisions on sample size and power of randomized clinical trials considering expected net benefits. In2017 Winter Simulation Conference [WSC]. IEEE. 2017; 2845-2856. https://tinyurl.com/y4wlxgof
  126. Van Griensven J, Edwards T, de Lamballerie X, Semple MG, Gallian P, Baize S, et al. Evaluation of convalescent plasma for Ebola virus disease in Guinea. New England Journal of Medicine. 2016; 374: 33-42. DOI: 10.1056/nejmoa1511812
  127. Chen ZM, Fu JF, Shu Q, Chen YH, Hua CZ, Li FB, et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World Journal of Pediatrics. 2020; 16: 1-7. DOI: 10.1007/s12519-020-00345-5.
  128. Kumar D, Malviya R, Sharma PK. Corona virus: A review of COVID-19. EJMO. 2020; 4: 8-25. DOI: 10.14744/ejmo.2020.22984
  129. Tang B, Xia F, Tang S, Bragazzi NL, Li Q, Sun X, et al. The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China. International Journal of Infectious Diseases. 2020; 95: 288-293, DOI: https://doi.org/10.1016/j.ijid.2020.03.018
  130. Wang L, Li X, Chen H, Yan S, Li D, Li Y, Gong Z. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol. 2020; 51: 343-348. DOI: https://doi.org/10.1159/000507471
  131. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science translational medicine. 2017; 9: eaal3653. DOI: 10.1126/scitranslmed.aal3653
  132. NaserGhandi A, Allameh SF, Saffarpour R. All about COVID-19 in brief. New Microbes and New Infections. 2020; 35. https://tinyurl.com/yyhcvey4
  133. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 [COVID-19]. Drug discoveries & therapeutics. 2020; 14: 58-60. DOI: 10.5582/ddt.2020.01012
  134. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus [COVID-19]: A review of clinical features, diagnosis, and treatment. Cureus. 2020; 12: e7355. DOI:10.7759/cureus.7355
  135. World Health Organization. Rational use of personal protective equipment for Coronavirus disease [COVID-19]: interim guidance, 27 February 2020. World Health Organization; 2020. https://tinyurl.com/y3w6cmar
  136. Khanna RC, Cicinelli MV, Gilbert SS, Honavar SG, Murthy GS. COVID-19 pandemic: Lessons learned and future directions. Indian Journal of Ophthalmology. 2020; 68: 703-710. DOI: 10.4103/ijo.IJO_843_20.

Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Dimensions
  • zenodo
  • openaire
  • ICI-World
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • FIT
  • CrossRef
  • LUBsearch
  • BIUSante
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search

 

 

COVID-19 alert