Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Physical Properties of Structures Formed by Vertical Graphene Walls and Graphene Films

Medicine Group    Start Submission

Khodos II, Matveev VN, Nikolaichik VI and Kononenko OV

Volume6-Issue12
Dates: Received: 2025-11-26 | Accepted: 2025-12-14 | Published: 2025-12-15
Pages: 1889-1896

Abstract

The work is devoted to the study of heterostructures consisting from the graphene film covering the substrate, and a high density of graphene-like structures vertically oriented to the substrate plane and forming multilayer walls predominantly of circular shape. A technique has been developed that allows obtaining such structures from the carbon-containing atmosphere. The walls grew predominantly around the particles formed during the heat treatment of Fe/Al film pre-deposited on SiO2/Si substrate. The influence of electromagnetic radiation of visible and near-ultraviolet ranges on the conductivity of the obtained structures has been established. The dependence of their conductivity on the magnetic field has been shown, and the values of mobility µ and concentration ns of carriers have been measured.

FullText HTML FullText PDF DOI: 10.37871/jbres2237


Certificate of Publication




Copyright

© 2025 Khodos II, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Khodos II, Matveev VN, Nikolaichik VI, Kononenko OV. Physical Properties of Structures Formed by Vertical Graphene Walls and Graphene Films. J Biomed Res Environ Sci. 2025 Dec 15; 6(12): 1889-1896. doi: 10.37871/jbres2237, Article ID: JBRES2237, Available at: https://www.jelsciences.com/articles/jbres2237.pdf


Subject area(s)

References


  1. Wu Y, Qiao P, Chong N, Shanet Z. Carbon nanowalls grown by microwave plasma enhanced CVD. Adv Mater. 2002;14:64-77. doi: 10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO%3B2-G.
  2. Takeuchi W, Takeda K, Hiramatsu M, Tokuda Y, Kano S, Sakata O, Tajiri H, Hori M. Monolitic self-sustaining nanographene sheet grown using plasma-enhanced chemical vapor deposition. Phys Status Solidi. 2010;207:139-43. doi: 10.1002/pssa.200925230.
  3. Hiramatsu M. Hori M. Fabrication of carbon nanowalls using novel plasma processing. Japanese Journal of Applied Physics. 2006;45(6B):5522-7. doi: 10.1143/JJAP.45.5522.
  4. Qian F, Deng J, Xiong F, Dong Y, Hu Y, Pan G, Wang Q, Xie Y, Sun J, Xu C. Direct growth of high-quality graphene ganowalls on dielectric surfaces by plasma-enhanced CVD for photo detection. Opt. Mater. Express. 2020;10(11):2901-10. doi: 10.1364/OME.404881.
  5. Chang S H. Synthesis of Carbon Nanowalls (CNWs) on a SiO2 substrate by Microwave Plasma-Enhanced Chemical Vapor Deposition (MPECVD) without catalyst J. of Academic Reseach and Reflection. 2019.
  6. Yang J, Yang Oi, Zhang Y, Wei X, Shi H. Graphene nanowalls in photodetectors. RSC Advances. 2023;13:22838-62. doi: 10.1039/D3RA03104G.
  7. Mineo H, Masaru H. Carbon nanowalls: synthesis and emerging applications. Springer Wien New York, NewYork. 2010. doi: 10.1007/978-3-211-99718-5.
  8. Cong J, Khan A, Li J, Li J, Wang Y, Xu M, Yang D, Yu X. Direct growth of graphene nanowalls on silicon using plasma-enhanced atomic layer deposition for high-performance Si-based infrared photodetectors ACS Appl. Electron. Mater. 2021;3(11):5048-58. doi: 10.1021/acsaelm.1c00807.
  9. Song X, Liu J, Yu L, Yang J, Fang L, Shi H, Du C, Wei D. Direct versatile PECVD growth of graphene nanowalls on multiple substrates, Mater. Lett. 2014;137:25-8. doi: 10.1016/j.matlet.2014.08.125.
  10. Ma Y, Jang H, Kim SJ, Pang C, Chae H. Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process. Nanoscale Res. Lett. 2015;10(1):1019. doi: 10.1186/s11671-015-1019-8.
  11. Hojati-Talemi P,Simon GP. Field emission study of graphene nanowalls prepared by microwave-plasma method. Carbon. 2011;49(8):2875-7. doi: 10.1016/j.carbon.2011.03.004.
  12. Mori T, Hiramatsu M, Yamakawa K, Takeda K. Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition, Diamond Relat. Mater. 2008;17(7):1513-7. doi:10.1016/j.diamond.2008.01.070.
  13. Wu Y, Vang B, Rong BY, Sun U. Carbon nanowalls and related materials, J. Mater. Chem. 2004;14:469-77. doi:10.1039/B311682D.
  14. Zhu M, Wang J, Holloway BC, Outlaw RA, Zhao X, Hou K, Shutthanandan V , Manos DM. A mechanism for carbon nanosheet formation. Carbon. 45; 2007:2229-34. doi: 10.1016/j.carbon.2007.06.017.
  15. Davami K, Jiang Y, Cortes J, Lin C, Shaygan M, Turner KT, Bargatin I. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition. Nanotechnology. 2016 Apr 15;27(15):155701. doi: 10.1088/0957-4484/27/15/155701. Epub 2016 Feb 29. PMID: 26926386.
  16. Zhou Q, Liu X, Zhang E, Luo S, Shen J, Wang Y, Wei D. The controlled growth of graphene nanowalls on Si for Schottky photodetector. AIP Adv. 2017;7:125317. doi: 10.1063/1.5001782.
  17. Li L, Dong Y, Guo W, Qian F, Xiong F, Fu Y, Du Z, Xu C, Sun J. High-responsivity photodetectors made of graphene nanowalls grown on Si. Appl. Phys. Lett. 2019; 115:081101. doi: 10.1063/1.5097313.
  18. Wang H, Fu Y. Graphene-nanowalls/silicon hybrid heterojunction photodetectors. Carbon. 2020;162:181-6. doi: 10.1016/j.carbon.2020.02.023.
  19. Wakabayashi K, Fuyita M, Ajiki H, Sigrist M. Electronic and magnetic properties of nanographite ribbons. Phys.Rev. B 1998;59:8271. doi: 10.1103/PhysRevB.59.8271.
  20. Matveev VN, Levashov VI, Kononenko OV, Matveev DV, Kasumov YuA, Khodos II, Volkov VT. Hall effect sensors on the basis of carbon. Materials Letters. 2015;158:384-7. doi: 10.1016/j.matlet.2015.06.055.
  21. Matveev VN, Volkov VT, Levashov VI, Kononenko OV, Khodos II. One-step synthesis of a h+ybrid of graphene films and ribbons. Inorganic Materials. 2018;54:229-32. doi: 10.1134/S002016851803010X.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search