Khodos II, Matveev VN, Nikolaichik VI and Kononenko OV
Volume6-Issue12
Dates: Received: 2025-11-26 | Accepted: 2025-12-14 | Published: 2025-12-15
Pages: 1889-1896
Abstract
The work is devoted to the study of heterostructures consisting from the graphene film covering the substrate, and a high density of graphene-like structures vertically oriented to the substrate plane and forming multilayer walls predominantly of circular shape. A technique has been developed that allows obtaining such structures from the carbon-containing atmosphere. The walls grew predominantly around the particles formed during the heat treatment of Fe/Al film pre-deposited on SiO2/Si substrate. The influence of electromagnetic radiation of visible and near-ultraviolet ranges on the conductivity of the obtained structures has been established. The dependence of their conductivity on the magnetic field has been shown, and the values of mobility µ and concentration ns of carriers have been measured.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2237
Certificate of Publication

Copyright
© 2025 Khodos II, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Khodos II, Matveev VN, Nikolaichik VI, Kononenko OV. Physical Properties of Structures Formed by Vertical Graphene Walls and Graphene Films. J Biomed Res Environ Sci. 2025 Dec 15; 6(12): 1889-1896. doi: 10.37871/jbres2237, Article ID: JBRES2237, Available at: https://www.jelsciences.com/articles/jbres2237.pdf
Subject area(s)
References
- Wu Y, Qiao P, Chong N, Shanet Z. Carbon nanowalls grown by microwave plasma enhanced CVD. Adv Mater. 2002;14:64-77. doi: 10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO%3B2-G.
- Takeuchi W, Takeda K, Hiramatsu M, Tokuda Y, Kano S, Sakata O, Tajiri H, Hori M. Monolitic self-sustaining nanographene sheet grown using plasma-enhanced chemical vapor deposition. Phys Status Solidi. 2010;207:139-43. doi: 10.1002/pssa.200925230.
- Hiramatsu M. Hori M. Fabrication of carbon nanowalls using novel plasma processing. Japanese Journal of Applied Physics. 2006;45(6B):5522-7. doi: 10.1143/JJAP.45.5522.
- Qian F, Deng J, Xiong F, Dong Y, Hu Y, Pan G, Wang Q, Xie Y, Sun J, Xu C. Direct growth of high-quality graphene ganowalls on dielectric surfaces by plasma-enhanced CVD for photo detection. Opt. Mater. Express. 2020;10(11):2901-10. doi: 10.1364/OME.404881.
- Chang S H. Synthesis of Carbon Nanowalls (CNWs) on a SiO2 substrate by Microwave Plasma-Enhanced Chemical Vapor Deposition (MPECVD) without catalyst J. of Academic Reseach and Reflection. 2019.
- Yang J, Yang Oi, Zhang Y, Wei X, Shi H. Graphene nanowalls in photodetectors. RSC Advances. 2023;13:22838-62. doi: 10.1039/D3RA03104G.
- Mineo H, Masaru H. Carbon nanowalls: synthesis and emerging applications. Springer Wien New York, NewYork. 2010. doi: 10.1007/978-3-211-99718-5.
- Cong J, Khan A, Li J, Li J, Wang Y, Xu M, Yang D, Yu X. Direct growth of graphene nanowalls on silicon using plasma-enhanced atomic layer deposition for high-performance Si-based infrared photodetectors ACS Appl. Electron. Mater. 2021;3(11):5048-58. doi: 10.1021/acsaelm.1c00807.
- Song X, Liu J, Yu L, Yang J, Fang L, Shi H, Du C, Wei D. Direct versatile PECVD growth of graphene nanowalls on multiple substrates, Mater. Lett. 2014;137:25-8. doi: 10.1016/j.matlet.2014.08.125.
- Ma Y, Jang H, Kim SJ, Pang C, Chae H. Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process. Nanoscale Res. Lett. 2015;10(1):1019. doi: 10.1186/s11671-015-1019-8.
- Hojati-Talemi P,Simon GP. Field emission study of graphene nanowalls prepared by microwave-plasma method. Carbon. 2011;49(8):2875-7. doi: 10.1016/j.carbon.2011.03.004.
- Mori T, Hiramatsu M, Yamakawa K, Takeda K. Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition, Diamond Relat. Mater. 2008;17(7):1513-7. doi:10.1016/j.diamond.2008.01.070.
- Wu Y, Vang B, Rong BY, Sun U. Carbon nanowalls and related materials, J. Mater. Chem. 2004;14:469-77. doi:10.1039/B311682D.
- Zhu M, Wang J, Holloway BC, Outlaw RA, Zhao X, Hou K, Shutthanandan V , Manos DM. A mechanism for carbon nanosheet formation. Carbon. 45; 2007:2229-34. doi: 10.1016/j.carbon.2007.06.017.
- Davami K, Jiang Y, Cortes J, Lin C, Shaygan M, Turner KT, Bargatin I. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition. Nanotechnology. 2016 Apr 15;27(15):155701. doi: 10.1088/0957-4484/27/15/155701. Epub 2016 Feb 29. PMID: 26926386.
- Zhou Q, Liu X, Zhang E, Luo S, Shen J, Wang Y, Wei D. The controlled growth of graphene nanowalls on Si for Schottky photodetector. AIP Adv. 2017;7:125317. doi: 10.1063/1.5001782.
- Li L, Dong Y, Guo W, Qian F, Xiong F, Fu Y, Du Z, Xu C, Sun J. High-responsivity photodetectors made of graphene nanowalls grown on Si. Appl. Phys. Lett. 2019; 115:081101. doi: 10.1063/1.5097313.
- Wang H, Fu Y. Graphene-nanowalls/silicon hybrid heterojunction photodetectors. Carbon. 2020;162:181-6. doi: 10.1016/j.carbon.2020.02.023.
- Wakabayashi K, Fuyita M, Ajiki H, Sigrist M. Electronic and magnetic properties of nanographite ribbons. Phys.Rev. B 1998;59:8271. doi: 10.1103/PhysRevB.59.8271.
- Matveev VN, Levashov VI, Kononenko OV, Matveev DV, Kasumov YuA, Khodos II, Volkov VT. Hall effect sensors on the basis of carbon. Materials Letters. 2015;158:384-7. doi: 10.1016/j.matlet.2015.06.055.
- Matveev VN, Volkov VT, Levashov VI, Kononenko OV, Khodos II. One-step synthesis of a h+ybrid of graphene films and ribbons. Inorganic Materials. 2018;54:229-32. doi: 10.1134/S002016851803010X.






























































