Reza KM
Volume6-Issue11
Dates: Received: 2025-11-05 | Accepted: 2025-11-26 | Published: 2025-11-27
Pages: 1735-1753
Abstract
Natural polymers are derived from agriculture, forestry and marine products or isolated from their wastes. The use of biopolymers, as opposed to synthetic polymers, offers significant advantages by reducing environmental impact and minimizing potential health risks. This study focuses on three polysaccharides (Cellulose, starch, and chitosan) and one protein (Zein), for applications in medicine and healthcare. These biopolymers and some of their derivatives are well-suited for medicine and healthcare applications, due to their several key properties as follows: (1) They are derived from renewable resources, and are environmentally friendly biomaterials, making them promising materials for sustainable medical uses; (2) These biopolymers possess excellent film- and fiber-forming capabilities, which are essential in biomedical engineering and drug delivery systems; (3) Their hydrophilic nature provide a range of surface functional groups that can bind to bioactive compounds, drugs, target organs, and nutritional components, enhancing their stability and effectiveness; (4) The degree of hydrophilicity varies among different biopolymers, enabling a wide range of chemical modifications and expanding their potential applications across medicine, healthcare, and nutrition; (5) The nano-sized biopolymers have demonstrated superior properties and performances compared to their conventional counterparts, offering advanced functionality in areas such as targeted drug delivery, wound healing, and tissue engineering; and (6) The nano-sized biopolymer-based materials and their nano-composites have found extensive applications in drug deliveries, tissue engineering, diagnostics and therapeutics.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2226
Certificate of Publication

Copyright
© 2025 Reza KM. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Reza KM. Biopolymer-Based Materials for Medicine and Health Care: A Review. J Biomed Res Environ Sci. 2025 Nov 27; 6(11): 1735-1753. doi: 10.37871/jbres2226, Article ID: JBRES2226, Available at: https://www.jelsciences.com/articles/jbres2226.pdf
Subject area(s)
References
- Carraher CE. Carraher's polymer chemistry. 10th ed. Boca Raton: Taylor & Francis; 2017.
- Gowthaman N, Lim H, Sreeraj T, Amalraj A, Gopi S. Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. In: Sabu T, Sreeraj G, Augustine A, editors. Biopolymers and Their Industrial Applications; From Plant, Animal, and Marine Sources, to Functional Products. Elsevier: Amsterdam, Chapter 15; 2021. p.351-372,
- Sanchez HH, Lopez GGF. Introduction. In: Sanchez HGF, Lopez G, editors. Food Nano-science and Nanotechnology. Springer: New York; 2015.
- Kasaai MR. biopolymers with renewable resources and recyclable in nature as a promising alternative for synthetic polymers in food packaging applications: A short review. Biopolymer Res. 2022;6(3):116. doi: 10.4172/jrm.1000116.
- Cruz SV, Tecante A. Nano-cellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocoll. 2021; 118:106771. doi: 10.1016/j.foodhyd.2021.106771.
- Behrooznia Z, Nourmohammadi J. Polysaccharide-Based materials as an eco-friendly alternative in biomedical, environmental, and food packaging. Giant. 2024;19:100301. doi: 10.1016/j.giant.2024.100301.
- Roberts EL, Abdollahi S, Oustadi F, Stephens ED, Badv M. Bacterial-Nanocellulose-Based Biointerfaces and Biomimetic Constructs for Blood-Contacting Medical Applications. ACS Mater Au. 2023 Jun 27;3(5):418-441. doi: 10.1021/acsmaterialsau.3c00021. PMID: 38089096; PMCID: PMC10510515.
- Bull SC, Doig AJ. Properties of protein drug target classes. PLoS One. 2015 Mar 30;10(3):e0117955. doi: 10.1371/journal.pone.0117955. PMID: 25822509; PMCID: PMC4379170.
- Lopez OV, Castillo LA, Garcia MA, Villar MA, Barbosa SE. Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocoll. 2015;43:18-24. doi: 10.1016/j.foodhyd.2014.04.021.
- Rochani AK, Balasubramanian S, Ravindran Girija A, Raveendran S, Borah A, Nagaoka Y, Nakajima Y, Maekawa T, Kumar DS. Dual mode of cancer cell destruction for pancreatic cancer therapy using Hsp90 inhibitor loaded polymeric nano magnetic formulation. Int J Pharm. 2016 Sep 10;511(1):648-658. doi: 10.1016/j.ijpharm.2016.07.048. Epub 2016 Jul 25. PMID: 27469073.
- Wang PY, Zhu XL, Lin ZB. Antitumor and Immunomodulatory Effects of Polysaccharides from Broken-Spore of Ganoderma lucidum. Front Pharmacol. 2012 Jul 13;3:135. doi: 10.3389/fphar.2012.00135. PMID: 22811667; PMCID: PMC3395810.
- den HF. Random polymers. Springer-Verlag. Berlin. 2009.
- Yu K, Yang L, Zhang N, Wang S, Liu H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int J Biol Macromol. 2024 Jun;272(Pt 2):132668. doi: 10.1016/j.ijbiomac.2024.132668. Epub 2024 May 29. PMID: 38821305.
- Kasaai MR. Biopolymer-based nanomaterials for food, nutrition, and healthcare sectors: An overview on their properties, functions, and applications, In: Hussain CM. editor. Handbook of functionalized nanomaterials for industrial applications. Micro and Nano Technologies. Elsevier: Amsterdam; 2020. P.167-184. doi: 10.1016/B978-0-12-816787-8.00007-7.
- Álvarez PL, Rubio RL, Vilela VJL. Chitosan-based nanogels for biomedical applications. In: Torchilin V, editor. Handbook of Materials for Nanomedicine: Polymeric Nanomaterials, Jenny Stanford Publishing Pte. Ltd. Singapore; 2020. p.355-416.
- Reddy N, Yang Y. Potential of plant proteins for medical applications. Trends Biotechnol. 2011 Oct;29(10):490-8. doi: 10.1016/j.tibtech.2011.05.003. Epub 2011 Jun 12. PMID: 21665302.
- Kasaai MR. Zein and zein-based NPs for food packaging applications: A global view. Adv Sci Eng Med. 2017a;9(6):439-444.
- Kasaai MR. Zein and zein -based nano-materials for food and nutrition applications: A review. Trends Food Sci Technol. 2018;79:184-197. doi: 10.1016/j.tifs.2018.07.015.
- Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release. 2013 Feb 28;166(1):1-9. doi: 10.1016/j.jconrel.2012.12.005. Epub 2012 Dec 13. PMID: 23246471; PMCID: PMC3565042.
- Cho H, Lai TC, Tomoda K, Kwon GS. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech. 2015 Feb;16(1):10-20. doi: 10.1208/s12249-014-0251-3. Epub 2014 Dec 11. PMID: 25501872; PMCID: PMC4309804.
- Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010 Oct;2(4):282-9. doi: 10.4103/0975-7406.72127. PMID: 21180459; PMCID: PMC2996072.
- Mahkam M. Starch-based polymeric carriers for oral-insulin delivery. J Biomed Mater Res A. 2010 Mar 15;92(4):1392-7. doi: 10.1002/jbm.a.32490. PMID: 19353572.
- Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009 Aug 10;61(10):768-84. doi: 10.1016/j.addr.2009.04.016. Epub 2009 May 5. PMID: 19422866.
- Kumar N, Kumbhat S. Essentials in nano-science and nanotechnology. New Jersey: John Wiley and Sons; 2016.
- Torchilin V, Amiji M. Handbook of materials for Nano medicine polymeric nanomaterials. Jenny Stanford Series on Biomedical Nanotechnology, Jenny Stanford Publishing Pte. Ltd. Singapore. 2020.
- Faridi Esfanjani A, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B Biointerfaces. 2016 Oct 1;146:532-43. doi: 10.1016/j.colsurfb.2016.06.053. Epub 2016 Jun 29. PMID: 27419648.
- Vega-Vásquez P, Mosier NS, Irudayaraj J. Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Front Bioeng Biotechnol. 2020 Feb 18;8:79. doi: 10.3389/fbioe.2020.00079. PMID: 32133353; PMCID: PMC7041307.
- Ansari MM, Heo Y, Do K, Ghosh M, Son YO. Nanocellulose derived from agricultural biowaste by-products–sustainable synthesis, biocompatibility, biomedical applications, and future perspectives: A review. Carbohydr Polym Technol Appl. 2024;3421(8):100529. doi: 10.1016/j.carpta.2024.100529.
- Kasaai MR. Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J Appl Polym Sci. 2002;86(9):2189-2193. doi: 10.1002/app.11164.
- Riseh RS, Hassanisaadi M, Vatankhah M, Babaki SA, Barka EA. Chitosan as a potential natural compound to manage plant diseases. Int J Biol Macromol. 2022 Nov 1;220:998-1009. doi: 10.1016/j.ijbiomac.2022.08.109. Epub 2022 Aug 19. PMID: 35988725.
- Coultate TP. Food: The chemistry of its components. 4th ed. RSC. Cambridge. UK; 2002.
- Guo Y, Liu Z, An H, Li M, Hu J. Nano-structure and properties of maize zein studied by atomic force microscopy. J Cereal Sci. 2005;41:277-281. doi: 10.1016/j.jcs.2004.12.005.
- Mondal S. Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym. 2017 May 1;163:301-316. doi: 10.1016/j.carbpol.2016.12.050. Epub 2016 Dec 29. PMID: 28267510.
- Xie F, Pollet E, Halley PJ, Averous L. Starch-based nano- bio-composites. Prog Polym Sci. 2013;38:1590-1628. doi: 10.1016/j.progpolymsci.2013.05.002.
- Zhang X, Huang J, Chang PR, Li J, Chen Y, Wang D, Yu J, Chen J. Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer. 2010;51:4398-4407. doi: 10.1016/j.polymer.2010.07.025.
- Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics. 2020 Jul 16;12(7):669. doi: 10.3390/pharmaceutics12070669. PMID: 32708823; PMCID: PMC7407519.
- Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119-1198. doi: 10.1016/j.progpolymsci.2008.07.008.
- Jiménez A, Fabra MJ, Talens P, Chiralt A. Edible and biodegradable starch films: A review. Food Bioprocess Technol. 2012;5:2058-2076. doi: 10.1007/s11947-012-0835-4.
- Padua GW, Wang Q. Controlled self-organization of zein nanostructures for encapsulation of food ingredients. In: Huang Q, Given P, Qian M, editors. Micro/ Nano Encapsulation of Active Food Ingredients. Washington DC. ACS Symposium Series; 2009. p.1007.
- Ventura-Cruz S, Tecante A. Nano-cellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocoll. 2021;118:106771. doi: 10.1016/j.foodhyd.2021.106771.
- Jayakumar R, Menon D, Manzoor K, Naira SV, Tamura H. Biomedical applications of chitin and chitosan-based nanomaterials - A short review. Carbohydr Polym. 2010;82:227-232.
- De Souza R, Zahedi P, Allen CJ, Piquette-Miller M. Biocompatibility of injectable chitosan-phospholipid implant systems. Biomaterials. 2009 Aug;30(23-24):3818-24. doi: 10.1016/j.biomaterials.2009.04.003. Epub 2009 Apr 26. PMID: 19394688.
- Smith BM, Bean SR, Selling G, Sessa D, Aramouni FM. Effect of Salt and Ethanol Addition on Zein-Starch Dough and Bread Quality. J Food Sci. 2017 Mar;82(3):613-621. doi: 10.1111/1750-3841.13637. Epub 2017 Feb 2. PMID: 28152197.
- Singh G, Kaur L, Cupta GD. Enhancement of the solubility of poorly water -soluble drugs through solid dispersion: A Comprehensive Review. Ind J Pharm Sci. 2017;79(5):674-687.
- Kasaai MR. Molecular weight and molecular weight distribution for biopolymers. In: Advances in physicochemical properties of biopolymers. Part 1, Bentham Science publishers: CW Soest (The Netherlands); 2017b. p.21-45.
- Nalwa HS. editor. Encyclopedia of nano-science and nanotechnology (General reference. American Scientific Publishers: Stevenson Ranch (CA); 2004.
- Silvestre C, Duraccio D, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci. 2011;36:1766-1782. doi: 10.1016/j.progpolymsci.2011.02.003.
- Kumar S, Spandanagowda ND, Tirole R, Dave V. Nanotechnology in the agriculture industry. In: Birla S, Singh N, Shukla NK, editors. Nanotechnology: Device Design and Applications. CRC Press, Taylor & Francis Group, LLC: Boca Raton; 2022. p.157-174.
- Gopalakrishnan S, Vaidyanthan K, Kalarikkal N. Recent advances in nanomedicine: applications in diagnosis and therapeutics. In: Thomas S, Kalarikkal N, Stephan Am, Raneesh B, Haghi AK, editors. Apple Academic Press: Toronto; 2015. p.251-287.
- Rai I, Kumar PV, Kalarikkal N. Current advances in Nano-medicine: Applications in clinical medicine and surgery. In: Thomas S, Kalarikkal N, Stephan AM, Raneesh B, Haghi AK, editors. Advanced Nano-materials: Synthesis, Properties and Applications. Apple Academic Press: Toronto; 2015. p.173-199.
- Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Mater Today. 2005;8:18-26. doi: 10.1016/S1369-7021(05)71033-6.
- Kuo PC. The application of nanotechnology to functional foods and nutraceuticals to enhance their bioactivities. In: Biotechnology in functional foods and nutracuticals. Bagchi D, Lau FC, Ghosh DK, editors. CRC, Taylor and Francis Group: Boca Raton; 2010. p.447-484.
- Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. Materials (Basel). 2017 Aug 10;10(8):929. doi: 10.3390/ma10080929. PMID: 28796191; PMCID: PMC5578295.
- Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013 Jan;65(1):104-20. doi: 10.1016/j.addr.2012.10.003. Epub 2012 Oct 23. PMID: 23088863; PMCID: PMC3565095.
- Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302-325. doi: 10.1016/j.eurpolymj.2014.07.025.
- Rochani A, Raveendran S, Kumar DS. Sustainable green polymeric nano-constructs for active and passive cancer therapeutics. In: Torchilin V, Amiji M. editors. Handbook of Materials for Nanomedicine Polymeric Nanomaterials, Jenny Stanford Series on Biomedical Nanotechnology. Jenny Stanford Publishing Pte. Ltd., Singapore; 2020.
- Saberi-Riseh R, Moradi-Pour M, Mohammadinejad R, Thakur VK. Biopolymers for Biological Control of Plant Pathogens: Advances in Microencapsulation of Beneficial Microorganisms. Polymers (Basel). 2021 Jun 10;13(12):1938. doi: 10.3390/polym13121938. PMID: 34200966; PMCID: PMC8230584.
- Kareem F, Chandrawati R, Ahmed MU. Tailoring nano cellulose: A comprehensive exploration of functionalisation with small, macro, and inorganic molecules for enhanced sensing and dual-mode biosensing. Measurement. 2025;239:115499. doi: 10.1016/j.measurement.2024.115499.
- Khezerlou A, Tavassoli M, Alizadeh Sani M, Mohammadi K, Ehsani A, McClements DJ. Application of Nanotechnology to Improve the Performance of Biodegradable Biopolymer-Based Packaging Materials. Polymers (Basel). 2021 Dec 15;13(24):4399. doi: 10.3390/polym13244399. PMID: 34960949; PMCID: PMC8707388.
- Sabaghi M, Hoseyni SZ, Tavasoli S, Mozafari MR, Katouzian I. Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review. Colloids Surf B Biointerfaces. 2021 Aug;204:111781. doi: 10.1016/j.colsurfb.2021.111781. Epub 2021 Apr 24. PMID: 33930733.
- Wang C, Gong C, Qin Y, Hu Y, Jiao A, Jin Z, Qiu C, Wang J. Bioactive and functional biodegradable packaging films reinforced with NPs. J Food Eng. 2022;312. doi: 10.1016/j.jfoodeng.2021.110752.
- Eroglu MS, Oner ET, Mutlu EC, Bostan MS. Sugar Based Biopolymers in Nanomedicine; New Emerging Era for Cancer Imaging and Therapy. Curr Top Med Chem. 2017;17(13):1507-1520. doi: 10.2174/1568026616666161222101703. PMID: 28017156.
- Marradi M, García I, Penadés S. Carbohydrate-based nanoparticles for potential applications in medicine. Prog Mol Biol Transl Sci. 2011;104:141-73. doi: 10.1016/B978-0-12-416020-0.00004-8. PMID: 22093219.
- Dong CM. Glyconanoparticles for biomedical applications. Comb Chem High Throughput Screen. 2011 Mar 1;14(3):173-81. doi: 10.2174/138620711794728716. PMID: 21271984.
- Bull SC, Doig AJ. Properties of protein drug target classes. PLoS One. 2015 Mar 30;10(3):e0117955. doi: 10.1371/journal.pone.0117955. PMID: 25822509; PMCID: PMC4379170.
- Patel J, Patel A. Toxicity of nanomaterials on the liver, kidney and spleen. In: Sutariya VB, Pathak Y. editors. Bio-interactions of Nano-materials, CRC Press, Taylor & Francis Group, Boca Raton; 2015.
- Seabra AB, Bernardes JS, Fávaro WJ, Paula AJ, Durán N. Cellulose nanocrystals as carriers in medicine and their toxicities: A review. Carbohydr Polym. 2018 Feb 1;181:514-527. doi: 10.1016/j.carbpol.2017.12.014. Epub 2017 Dec 7. PMID: 29254002.
- Cui R, Chen F, Zhao Y, Huang W, Liu C. A novel injectable starch-based tissue adhesive for hemostasis. J Mater Chem B. 2020 Sep 23;8(36):8282-8293. doi: 10.1039/d0tb01562h. PMID: 32785356.
- Yu H, Chen X, Lu T, Sun J, Tian H, Hu J, Wang Y, Zhang P, Jing X. Poly(L-lysine)-graft-chitosan copolymers: synthesis, characterization, and gene transfection effect. Biomacromolecules. 2007 May;8(5):1425-35. doi: 10.1021/bm060910u. Epub 2007 Apr 11. PMID: 17425363.
- Wang Y, Padua GW. Nanoscale characterization of zein self-assembly. Langmuir. 2012 Feb 7;28(5):2429-35. doi: 10.1021/la204204j. Epub 2012 Jan 20. PMID: 22224954.
- Wang Y, Padua GW. Formation of zein spheres by evaporation-induced self-assembly. Colloids Polym Sci. 2012b;290:1593-1598. doi: 10.1007/s00396-012-2749-0.
- Weissmueller NT, Lu HD, Hurley A, Prud'homme RK. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives. Biomacromolecules. 2016 Nov 14;17(11):3828-3837. doi: 10.1021/acs.biomac.6b01440. Epub 2016 Oct 31. PMID: 27744703.
- Enright HA, Malfatti MA. Detection methods for the in vivo bio distribution of iron oxide and silica NPs: Efects of size, surface chemistry, and shape. In: Nanotoxicology: Progress toward Nanomedicine. Monteiro-Riviere NA, Longtran C, editors. CRC Press, Taylor and Francis Group: Boca Raton; 2014. p.177-200.
- Corradini E, Curti PS, Meniqueti AB, Martins AF, Rubira AF, Muniz EC. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int J Mol Sci. 2014 Dec 4;15(12):22438-70. doi: 10.3390/ijms151222438. PMID: 25486057; PMCID: PMC4284718.
- Endes C, Camarero-Espinosa S, Mueller S, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJ. A critical review of the current knowledge regarding the biological impact of nanocellulose. J Nanobiotechnology. 2016 Dec 1;14(1):78. doi: 10.1186/s12951-016-0230-9. PMID: 27903280; PMCID: PMC5131550.
- Arora A, Padua GW. Review: nanocomposites in food packaging. J Food Sci. 2010 Jan-Feb;75(1):R43-9. doi: 10.1111/j.1750-3841.2009.01456.x. PMID: 20492194.
- El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym. 2015 Sep 20;129:156-67. doi: 10.1016/j.carbpol.2015.04.051. Epub 2015 Apr 30. PMID: 26050901.
- Ghanbarzadeh B, Oleyaei SA, Almasi H. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications. Crit Rev Food Sci Nutr. 2015;55(12):1699-723. doi: 10.1080/10408398.2012.731023. PMID: 24798951.
- Othman SH. Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. 2nd International Conference on Agricultural and Food Engineering, CAFEi2014. Agri Agricul Sci Procedia. 2014;2:296-303.
- Ghazzy A, Naik RR, Shakya AK. Metal-Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers (Basel). 2023 May 2;15(9):2167. doi: 10.3390/polym15092167. PMID: 37177313; PMCID: PMC10180664.
- Yang J, Li J. Self-assembled cellulose materials for biomedicine: A review. Carbohydr Polym. 2018 Feb 1;181:264-274. doi: 10.1016/j.carbpol.2017.10.067. Epub 2017 Oct 23. PMID: 29253971.
- Deborah LC, Helene AC. Preparation and application of starch NPs for nano-composites: A review. React Funct Polym. 2014;85:97-120.
- Jiang S, Liu C, Wang X, Xiong L, Sun Q. Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch NPs. LWT. 2016;69:251-257.
- Nasri-Nasrabadi B, Mehrasa M, Rafienia M, Bonakdar S, Behzad T, Gavanji S. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym. 2014 Aug 8;108:232-8. doi: 10.1016/j.carbpol.2014.02.075. Epub 2014 Mar 12. PMID: 24751269.
- Divya K, Vijayan S, Tijith KG, Jisha MS. Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fiber Polym. 2017;18(2):221-230. doi: 10.1007/s12221-017-6690-1.
- Zhang XH, Li YT, Guo MM, Jin TZ, Arabi SA, He Q, Ismail BB, Hu Y, Lu D. Antimicrobial and UV blocking properties of composite chitosan films with curcumin grafted cellulose nanofiber. Food Hydrocoll. 2021;112. doi: 10.1016/j.foodhyd.2020.106337.
- Liu C, Xu B, McClements DJ, Xu X, Cui S, Gao L, Zhou L, Xiong L, Sun Q, Dai L. Properties of curcumin-loaded zein-tea saponin nanoparticles prepared by antisolvent co-precipitation and precipitation. Food Chem. 2022 Oct 15;391:133224. doi: 10.1016/j.foodchem.2022.133224. Epub 2022 May 16. PMID: 35623284.
- Xu G, Liu D, Zhao G, Chen S, Wang J, Ye X. Effect of eleven antioxidants in inhibiting thermal oxidation of cholesterol. J Am Oil Chem Soc. 2016;93(2):215-225. doi: 10.1007/s11746-015-2757-6.
- Zou L, Ning M, Wang W, Zheng Y, Ma L, Lv J. Naringenin Prevents Propofol Induced Neurodegeneration in Neonatal Mice Brain and Long-Term Neurocognitive Impacts on Adults. Drug Des Devel Ther. 2020 Dec 10;14:5469-5482. doi: 10.2147/DDDT.S280443. PMID: 33328725; PMCID: PMC7735719.
- Nandhini J, Karthikeyan E, Rajeshkumar S. Eco-friendly bio-nanocomposites: pioneering sustainable biomedical advancements in engineering. Discov Nano. 2024 May 9;19(1):86. doi: 10.1186/s11671-024-04007-7. PMID: 38724698; PMCID: PMC11082105.
- Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O. Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol. 2016 Jun;39:76-88. doi: 10.1016/j.copbio.2016.01.002. Epub 2016 Feb 28. PMID: 26930621.
- Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer. 2007;48:7546-57. doi: 10.1016/j.polymer.2007.11.019.
- Taepaiboon P, Rungsardthong U, Supaphol P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm. 2007 Sep;67(2):387-97. doi: 10.1016/j.ejpb.2007.03.018. Epub 2007 Mar 31. PMID: 17498935.
- Tungprapa S, Jangchud I, Supaphol P. Release characteristics of four model drugs from drugloaded electrospun cellulose acetate fiber mats. Polymer. 2007;48:5030-41.
- Ferreira FV, Souza AG, Ajdary R, de Souza LP, Lopes JH, Correa DS, Siqueira G, Barud HS, Rosa DDS, Mattoso LHC, Rojas OJ. Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioact Mater. 2023 Jul 12;29:151-176. doi: 10.1016/j.bioactmat.2023.06.020. PMID: 37502678; PMCID: PMC10368849.
- Wu Z, Chen S, Li J, Wang B, Jin M, Liang Q, Zhang D, Han Z, Deng L, Qu X, Wang H. Insights into hierarchical structure-property-application relationships of advanced bacterial cellulose materials. Adv Funct Mater. 2023;33(12). doi: 10.1002/adfm.202214327.
- O'Toole MG, Henderson RM, Soucy PA, Fasciotto BH, Hoblitzell PJ, Keynton RS, Ehringer WD, Gobin AS. Curcumin encapsulation in submicrometer spray-dried chitosan/Tween 20 particles. Biomacromolecules. 2012 Aug 13;13(8):2309-14. doi: 10.1021/bm300564v. Epub 2012 Jul 10. PMID: 22738300.
- Tsai YM, Chien CF, Lin LC, Tsai TH. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm. 2011 Sep 15;416(1):331-8. doi: 10.1016/j.ijpharm.2011.06.030. Epub 2011 Jun 24. PMID: 21729743.
- Lee D, Mohapatra SS. Chitosan nanoparticle-mediated gene transfer. Methods Mol Biol. 2008;433:127-40. doi: 10.1007/978-1-59745-237-3_8. PMID: 18679621.
- 100.Xiangyang X, Ling L, Jianping Z, Shiyue L, Jie Y, Xiaojin Y, Jinsheng R. Preparation and characterization of N-succinyl-N'-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity. Colloids Surf B Biointerfaces. 2007 Apr 1;55(2):222-8. doi: 10.1016/j.colsurfb.2006.12.006. Epub 2006 Dec 20. PMID: 17254755.
- 101.Zhang Y, Huo MR, Zhou JP, Yu D, Wu YP. Potential of amphiphilically modified low molecular weight chitosan as a novel carrier for hydrophobic anticancer drug: Synthesis, characterization, micellization and cytotoxicity evaluation. Carbohydr Polym. 2009;77:231-238. doi: 10.1016/j.carbpol.2008.12.034.
- 102.Hu FQ, Meng P, Dai YQ, Du YZ, You J, Wei XH, Yuan H. PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy. Eur J Pharm Biopharm. 2008 Nov;70(3):749-57. doi: 10.1016/j.ejpb.2008.06.015. Epub 2008 Jun 24. PMID: 18620050.
- 103.Lee SJ, Park K, Oh YK, Kwon SH, Her S, Kim IS, Choi K, Lee SJ, Kim H, Lee SG, Kim K, Kwon IC. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials. 2009 May;30(15):2929-39. doi: 10.1016/j.biomaterials.2009.01.058. Epub 2009 Feb 28. PMID: 19254811.
- 104.Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, Kim Y, Park JH, Kim J, Her S, Oh YK, Kwon IC, Kim K, Jeong SY. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009 May 5;135(3):259-67. doi: 10.1016/j.jconrel.2009.01.018. Epub 2009 Feb 3. PMID: 19331853.
- 105.Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, Kim Y, Park JH, Kim J, Her S, Oh YK, Kwon IC, Kim K, Jeong SY. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009 May 5;135(3):259-67. doi: 10.1016/j.jconrel.2009.01.018. Epub 2009 Feb 3. PMID: 19331853.
- 106.Liu XF, Guan YL, Yang DZ, Li Z, Yao KD. Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science. 2001;79:1324-1335. doi:10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L.
- 107.Ing LY, Zin NM, Sarwar A, Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater. 2012;2012:632698. doi: 10.1155/2012/632698. Epub 2012 Jul 8. PMID: 22829829; PMCID: PMC3399401.
- 108.Gadhave RV, Das A, Mahanwar PA, Gadekar PT. Starch based bio-plastics: The future of sustainable packaging. J Polm Chem. 2018;8(2):21-33. doi: 10.4236/ojpchem.2018.82003.
- 109.Papazoglou E, Parthasarathy A. In: Bio-nanotechnology, Morgan and Claypool Publishers. New York; 2007. p.47-66.
- 110.Chen Y, Cao X, Chang PR, Huneault MA. A comparative study on the films of poly (vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/native pea starch. Carbohydr Polym. 2008;73:8-17. doi: 10.1016/j.carbpol.2007.10.015.
- 111.Lin N, Yu J, Chang PR, Li J, Huang J. Poly (butylene succinate) based biocomposites filled with polysaccharide nanocrystals: Structure and properties. Polym Compos. 2011;32(3):472-482. doi: 10.1002/pc.21066.
- 112.Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR. Structure and mechanical properties of poly (lactic acid) filled with (Starch nanocrystal)‐graft‐poly(ε‐caprolactone), Macromol. Mater Eng. 2008;293:763-770.
- 113.Jain R, Dandekar P, Loretz B, Melero A, Stauner T, Wenz G, Koch M, Lehr CM. Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. Int J Pharm. 2011 Nov 25;420(1):147-55. doi: 10.1016/j.ijpharm.2011.08.030. Epub 2011 Aug 22. PMID: 21884767.
- 114.Jiang S, Liu C, Wang X, Xiong L, Sun Q. Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch NPs. LWT. 2016;69:251-257. doi: 10.1016/j.lwt.2016.01.053.
- 115.Sun Q, Li G, Dai L, Ji N, Xiong L. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chem. 2014 Nov 1;162:223-8. doi: 10.1016/j.foodchem.2014.04.068. Epub 2014 Apr 26. PMID: 24874379.
- 116.Luo Y, Wang Q. Zein-based micro- and nano-particles for drug and nutrient delivery: A review. J Appl Polym Sci. 2015;131:12. doi: 10.1002/APP.40696.
- 117.Patel AR, Velikov KP. Zein as a source of functional colloidal nano- and microstructures. Curr Opin Colloid Interface Sci. 2014;19:450-458. doi: 10.1016/j.cocis.2014.08.001.
- 118.Ye G, Wu T, Li Z, Teng M, Ma L, Qin M, Zhao P, Fu Q. Preparation and characterization of novel composite nanoparticles using zein and hyaluronic acid for efficient delivery of naringenin. Food Chem. 2023 Aug 15;417:135890. doi: 10.1016/j.foodchem.2023.135890. Epub 2023 Mar 16. PMID: 36933431.
- 119.Yuan Y, Ma M, Xu Y, Wang D. Surface coating of zein NPs to improve the application of bioactive compounds: A review. Trends Food Sci Technol. 2022;120:1-15. doi: 10.1016/j.tifs.2021.12.025.
- 120.Brahatheeswaran D, Mathew A, Aswathy RG, Nagaoka Y, Venugopal K, Yoshida Y, Maekawa T, Sakthikumar D. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed Mater. 2012 Aug;7(4):045001. doi: 10.1088/1748-6041/7/4/045001. Epub 2012 May 4. PMID: 22556150..
- 121.Zou L, Zheng B, Zhang R, Zhang Z, Liu W, Liu C, Xiao H, McClements DJ. Enhancing the bio-accessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein NPs plus digestible lipid NPs. Food Res Int. 2016;81:74-82.
- 122.Gezer PG, Liu GL, Kokini JL. Development of a biodegradable sensor platform from gold coated zein nanophotonic films to detect peanut allergen, Ara h1, using surface enhanced raman spectroscopy. Talanta. 2016 Apr 1;150:224-32. doi: 10.1016/j.talanta.2015.12.034. Epub 2015 Dec 13. PMID: 26838403.
- 123. Zou T, Li Z, Percival SS, Bonard S, Gu L. Fabrication, characterization, and cytotoxicity evaluation of cranberry procyanidins-zein NPs. Food Hydrocoll. 2012;27:293-300. doi: 10.1016/j.foodhyd.2011.10.002.
- 124.Kasaai MR. Nano-sized clays, graphene, and inorganic oxides as fillers of nanocomposites for their mechanical and barrier properties improvement. In: Mallakpour S, Hussain CM, editors. Handbook of Nanofillers. Springer Singapore. 2025;118:(3)101-114. doi: 10.1007/978-981-96-2407-2_149.
- 125.Kasaai MR. Biopolymers as fillers of biopolymer matrices to fabricate green nano-Composites for food coating and packaging. In: Mallakpour S, Hussain CM, editors. Handbook of Nano fillers. Springer Singapore. 2025 ;120:3135-3148 . doi: 10.1007/978-981-96-2407-2_152.
- 126.Vanderfleet OM, Cranston ED. Production routes to tailor the performance of cellulose nanocrystals. Nat Rev Mater. 2021;6:124-144. doi: 10.1038/s41578- 020-00239-y.
- 127.Troncoso OP, Torres FG. Non-Conventional starch nanoparticles for drug delivery applications. Med Devices Sens. 2020;3(10111). doi: 10.1002/mds3.10111.
- 128.Oberweis CV, Marchal JA, López-Ruiz E, Gálvez-Martín P. A Worldwide Overview of Regulatory Frameworks for Tissue-Based Products. Tissue Eng Part B Rev. 2020 Apr;26(2):181-196. doi: 10.1089/ten.TEB.2019.0315. Epub 2020 Jan 28. PMID: 31910099.
- 129.Ferreira FV, Souza AG, Ajdary R, de Souza LP, Lopes JH, Correa DS, Siqueira G, Barud HS, Rosa DDS, Mattoso LHC, Rojas OJ. Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioact Mater. 2023 Jul 12;29:151-176. doi: 10.1016/j.bioactmat.2023.06.020. PMID: 37502678; PMCID: PMC10368849.
- 130.Arif ZU. The role of polysaccharide - based biodegradable soft polymers in the healthcare sector. Adv Ind Eng Pol Res. 2025;8:132-156. doi: 10.1016/j.aiepr.2024.05.001.
- 131.Schick S, Heindel J, Groten R, Seide GH. Overcoming Challenges in the Commercialization of Biopolymers: From Research to Applications-A Review. Polymers (Basel). 2024 Dec 16;16(24):3498. doi: 10.3390/polym16243498. PMID: 39771350; PMCID: PMC11679288.






























































