Liu X, Lu Y, Wei J, Liu H, Huang J, Ding Y
Volume6-Issue11
Dates: Received: 2025-10-15 | Accepted: 2025-11-07 | Published: 2025-11-08
Pages: 1622-1670
Abstract
This review provides an in-depth examination of the tumor microenvironment, macrophages, and PD-1 checkpoint inhibitors. It delves into the fundamental aspects of the tumor microenvironment and macrophages, discussing the evolution of key concepts, the involvement of macrophages in tumor progression, and their interactions with tumor cells. The historical development of PD-1 checkpoint inhibitors is explored, detailing their discovery, early clinical trials, and initial challenges. Current insights into macrophages within the tumor microenvironment are presented, including their polarization, mechanisms of immunosuppression, and diagnostic techniques. The clinical application of PD-1 inhibitors is reviewed, encompassing therapeutic strategies, comparative efficacy across various cancers, and management of side effects. Additionally, the paper addresses technological advancements in tumor microenvironment research, future directions, and ongoing controversies, aiming to provide a comprehensive overview to inform further research and clinical applications.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2219
Certificate of Publication

Copyright
© 2025 Liu X, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Liu X, Lu Y, Wei J, Liu H, Huang J , Ding Y. Exploring the Tumor Microenvironment: Macrophages and PD-1 Checkpoint Inhibitors. J Biomed Res Environ Sci. 2025 Nov 08; 6(11): 1662-1670. doi: 10.37871/jbres2219, Article ID: JBRES2219, Available at: https://www.jelsciences.com/articles/jbres2219.pdf
Subject area(s)
References
- Hu Y, Li Z, Zhang Y, Wu Y, Liu Z, Zeng J, Hao Z, Li J, Ren J, Yao M. The Evolution of Tumor Microenvironment in Gliomas and Its Implication for Target Therapy. Int J Biol Sci. 2023 Aug 21;19(13):4311-4326. doi: 10.7150/ijbs.83531. PMID: 37705736; PMCID: PMC10496508.
- Gong Z, Jia Q, Guo J, Li C, Xu S, Jin Z, Chu H, Wan YY, Zhu B, Zhou Y. Caspase-8 contributes to an immuno-hot microenvironment by promoting phagocytosis via an ecto-calreticulin-dependent mechanism. Exp Hematol Oncol. 2023 Jan 12;12(1):7. doi: 10.1186/s40164-022-00371-1. PMID: 36635765; PMCID: PMC9835222.
- Yang K, Wang X, Song C, He Z, Wang R, Xu Y, Jiang G, Wan Y, Mei J, Mao W. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. 2023 Mar 13;13(6):1774-1808. doi: 10.7150/thno.82920. PMID: 37064872; PMCID: PMC10091885.
- Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel). 2021 Apr 12;12(4):558. doi: 10.3390/genes12040558. PMID: 33921421; PMCID: PMC8068843.
- Li M, Jiang P, Wei S, Wang J, Li C. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression. Front Immunol. 2023 Feb 9;14:1113312. doi: 10.3389/fimmu.2023.1113312. PMID: 36845095; PMCID: PMC9947507.
- Li B, Liu S, Yang Q, Li Z, Li J, Wu J, Sun S, Xu Z, Sun S, Wu Q. Macrophages in Tumor-Associated Adipose Microenvironment Accelerate Tumor Progression. Adv Biol (Weinh). 2023 Jan;7(1):e2200161. doi: 10.1002/adbi.202200161. Epub 2022 Oct 20. PMID: 36266968.
- Dallavalasa S, Beeraka NM, Basavaraju CG, Tulimilli SV, Sadhu SP, Rajesh K, Aliev G, Madhunapantula SV. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis - Current Status. Curr Med Chem. 2021;28(39):8203-8236. doi: 10.2174/0929867328666210720143721. PMID: 34303328.
- He YC, Hao ZN, Li Z, Gao DW. Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer. World J Gastroenterol. 2023 Jan 28;29(4):670-681. doi: 10.3748/wjg.v29.i4.670. PMID: 36742173; PMCID: PMC9896619.
- Lecoultre M, Dutoit V, Walker PR. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: a review. J Immunother Cancer. 2020 Dec;8(2):e001408. doi: 10.1136/jitc-2020-001408. PMID: 33335026; PMCID: PMC7747550.
- Mito R, Iriki T, Fujiwara Y, Pan C, Ikeda T, Nohara T, Suzuki M, Sakagami T, Komohara Y. Onionin A inhibits small-cell lung cancer proliferation through suppressing STAT3 activation induced by macrophages-derived IL-6 and cell-cell interaction with tumor-associated macrophage. Hum Cell. 2023 May;36(3):1068-1080. doi: 10.1007/s13577-023-00895-6. Epub 2023 Mar 24. PMID: 36961655; PMCID: PMC10110690.
- Liu X, Liu Y, Qi Y, Huang Y, Hu F, Dong F, Shu K, Lei T. Signal Pathways Involved in the Interaction Between Tumor-Associated Macrophages/TAMs and Glioblastoma Cells. Front Oncol. 2022 May 4;12:822085. doi: 10.3389/fonc.2022.822085. PMID: 35600367; PMCID: PMC9114701.
- Zhang X, Guo L, Tian W, Yang Y, Yin Y, Qiu Y, Wang W, Li Y, Zhang G, Zhao X, Wang G, Lin Z, Yang M, Zhao W, Lu D. CD36+ Proinflammatory Macrophages Interact with ZCCHC12+ Tumor Cells in Papillary Thyroid Cancer Promoting Tumor Progression and Recurrence. Cancer Immunol Res. 2024 Nov 4;12(11):1621-1639. doi: 10.1158/2326-6066.CIR-23-1047. PMID: 39178310.
- Hu X, Liu X, Feng D, Xu T, Li H, Hu C, Wang Z, Liu X, Yin P, Shi X, Shang D, Xu G. Polarization of Macrophages in Tumor Microenvironment Using High-Throughput Single-Cell Metabolomics. Anal Chem. 2024 Sep 17;96(37):14935-14943. doi: 10.1021/acs.analchem.4c02989. Epub 2024 Sep 2. PMID: 39221578.
- Wang S, Liu G, Li Y, Pan Y. Metabolic Reprogramming Induces Macrophage Polarization in the Tumor Microenvironment. Front Immunol. 2022 Jul 7;13:840029. doi: 10.3389/fimmu.2022.840029. PMID: 35874739; PMCID: PMC9302576.
- Benner B, Scarberry L, Suarez-Kelly LP, Duggan MC, Campbell AR, Smith E, Lapurga G, Jiang K, Butchar JP, Tridandapani S, Howard JH, Baiocchi RA, Mace TA, Carson WE 3rd. Generation of monocyte-derived tumor-associated macrophages using tumor-conditioned media provides a novel method to study tumor-associated macrophages in vitro. J Immunother Cancer. 2019 May 28;7(1):140. doi: 10.1186/s40425-019-0622-0. PMID: 31138333; PMCID: PMC6540573.
- Zhang W, Wang M, Ji C, Liu X, Gu B, Dong T. Macrophage polarization in the tumor microenvironment: Emerging roles and therapeutic potentials. Biomed Pharmacother. 2024 Aug;177:116930. doi: 10.1016/j.biopha.2024.116930. Epub 2024 Jun 14. PMID: 38878638.
- Yu X, Hu X, Wang D, Cui P, Zeng M, Li M, Gong C, Huang D, Wang Y, Zhang K, Fang X. Macrophage S1PR2 Drives Sepsis-induced Immunosuppression by Exacerbating Mitochondrial Fragmentation. Am J Respir Cell Mol Biol. 2025 Jun;72(6):615-626. doi: 10.1165/rcmb.2024-0161OC. PMID: 39626018.
- Wang K, Chen X, Lin P, Wu J, Huang Q, Chen ZN, Tian J, Wang H, Tian Y, Shi M, Qian M, Hui B, Zhu Y, Li L, Yao R, Bian H, Zhu P, Chen R, Chen L. CD147-K148me2-Driven Tumor Cell-Macrophage Crosstalk Provokes NSCLC Immunosuppression via the CCL5/CCR5 Axis. Adv Sci (Weinh). 2024 Aug;11(29):e2400611. doi: 10.1002/advs.202400611. Epub 2024 Jun 14. PMID: 38873823; PMCID: PMC11304266.
- Dias AMM, Courteau A, Bellaye PS, Kohli E, Oudot A, Doulain PE, Petitot C, Walker PM, Decréau R, Collin B. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics. 2022 Nov 5;14(11):2388. doi: 10.3390/pharmaceutics14112388. PMID: 36365207; PMCID: PMC9694944.
- Kamimura N, Wolf AM, Iwai Y. Development of Cancer Immunotherapy Targeting the PD-1 Pathway. J Nippon Med Sch. 2019;86(1):10-14. doi: 10.1272/jnms.JNMS.2019_86-2. PMID: 30918149.
- Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, Alimardani M, Pasdar A, Sahebkar A. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019 Aug;234(10):16824-16837. doi: 10.1002/jcp.28358. Epub 2019 Feb 19. PMID: 30784085.
- Berger KN, Pu JJ. PD-1 pathway and its clinical application: A 20year journey after discovery of the complete human PD-1 gene. Gene. 2018 Jan 5;638:20-25. doi: 10.1016/j.gene.2017.09.050. Epub 2017 Sep 23. PMID: 28951311.
- Li X, Zhou Y, Xu B, Qin Y, Zhao J, Li M, Xu J, Li G. Comparison of efficacy discrepancy between early-phase clinical trials and phase III trials of PD-1/PD-L1 inhibitors. J Immunother Cancer. 2024 Jan 17;12(1):e007959. doi: 10.1136/jitc-2023-007959. PMID: 38233100; PMCID: PMC10806571.
- Salik B, Smyth MJ, Nakamura K. Targeting immune checkpoints in hematological malignancies. J Hematol Oncol. 2020 Aug 12;13(1):111. doi: 10.1186/s13045-020-00947-6. PMID: 32787882; PMCID: PMC7425174.
- Xu M, Li S. The opportunities and challenges of using PD-1/PD-L1 inhibitors for leukemia treatment. Cancer Lett. 2024 Jul 1;593:216969. doi: 10.1016/j.canlet.2024.216969. Epub 2024 May 19. PMID: 38768681.
- Xian F, Wu J, Zhong L, Xu G. Efficacy and safety of PD1/PDL1 inhibitors combined with radiotherapy and anti-angiogenic therapy for solid tumors: A systematic review and meta-analysis. Medicine (Baltimore). 2023 Mar 10;102(10):e33204. doi: 10.1097/MD.0000000000033204. PMID: 36897735; PMCID: PMC9997836.
- Khalife N, Chahine C, Kordahi M, Felefly T, Kourie HR, Saleh K. Urothelial carcinoma in the era of immune checkpoint inhibitors. Immunotherapy. 2021 Aug;13(11):953-964. doi: 10.2217/imt-2021-0042. Epub 2021 Jun 29. PMID: 34184561.
- Zhang Q, Han X, Liu J, Qiao H. Comparison of the Efficacy and Safety of PD-1/PD-L1 Inhibitors in the Treatment of Small Cell Lung Cancer. Cancer Rep (Hoboken). 2025 Jan;8(1):e70081. doi: 10.1002/cnr2.70081. PMID: 39806774; PMCID: PMC11729371.
- Liu L, Yan Y, Wang Y, Li Z, Yang L, Yu K, Zhao Z. Comparative efficacy and safety of first‑line PD‑1/PD‑L1 inhibitors in immunotherapy for non‑small cell lung cancer: A network meta‑analysis. Oncol Lett. 2025 Jan 23;29(3):157. doi: 10.3892/ol.2025.14903. PMID: 39916949; PMCID: PMC11799748.
- Liu Y, Zhang H, Zhou L, Li W, Yang L, Li W, Li K, Liu X. Immunotherapy-Associated Pancreatic Adverse Events: Current Understanding of Their Mechanism, Diagnosis, and Management. Front Oncol. 2021 Feb 25;11:627612. doi: 10.3389/fonc.2021.627612. PMID: 33732647; PMCID: PMC7959713.
- Gong Y, Liu Y, Jiang F, Wang X. Ocular Immune-Related Adverse Events Associated with PD-1 Inhibitors: From Molecular Mechanisms to Clinical Management. Semin Ophthalmol. 2025 May;40(4):288-305. doi: 10.1080/08820538.2024.2433636. Epub 2024 Nov 28. PMID: 39606920.
- Turk M, Naumenko V, Mahoney DJ, Jenne CN. Tracking Cell Recruitment and Behavior within the Tumor Microenvironment Using Advanced Intravital Imaging Approaches. Cells. 2018 Jul 3;7(7):69. doi: 10.3390/cells7070069. PMID: 29970845; PMCID: PMC6071013.
- Chan HW, Kuo DY, Shueng PW, Chuang HY. Visualizing the Tumor Microenvironment: Molecular Imaging Probes Target Extracellular Matrix, Vascular Networks, and Immunosuppressive Cells. Pharmaceuticals (Basel). 2024 Dec 10;17(12):1663. doi: 10.3390/ph17121663. PMID: 39770505; PMCID: PMC11676442.
- Zhao F, Unnikrishnan S, Herbst EB, Klibanov AL, Mauldin FW Jr, Hossack JA. A Targeted Molecular Localization Imaging Method Applied to Tumor Microvasculature. Invest Radiol. 2021 Apr 1;56(4):197-206. doi: 10.1097/RLI.0000000000000728. PMID: 32976207; PMCID: PMC9462590.
- Zhao F, Unnikrishnan S, Herbst EB, Klibanov AL, Mauldin FW Jr, Hossack JA. A Targeted Molecular Localization Imaging Method Applied to Tumor Microvasculature. Invest Radiol. 2021 Apr 1;56(4):197-206. doi: 10.1097/RLI.0000000000000728. PMID: 32976207; PMCID: PMC9462590.
- Glass CK. Genetic and genomic approaches to understanding macrophage identity and function. Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):755-62. doi: 10.1161/ATVBAHA.114.304051. Epub 2015 Mar 5. PMID: 25745059; PMCID: PMC4376616.
- Kamal AHM, Fessler MB, Chowdhury SM. Comparative and network-based proteomic analysis of low dose ethanol- and lipopolysaccharide-induced macrophages. PLoS One. 2018 Feb 26;13(2):e0193104. doi: 10.1371/journal.pone.0193104. PMID: 29481576; PMCID: PMC5826526.
- Liu J, Chen M, Li S, Cai L, Ma L, Yang Q, Zhang X, Bai N, Wu X, Tang Z, Wang T. Biomarkers in the early stage of PD-1 inhibitor treatment have shown superior predictive capabilities for immune-related thyroid dysfunction. Front Immunol. 2024 Oct 10;15:1458488. doi: 10.3389/fimmu.2024.1458488. PMID: 39450178; PMCID: PMC11499093.
- Sun J, Li X, Wang Q, Chen P, Zhao L, Gao Y. Proteomic profiling and biomarker discovery for predicting the response to PD-1 inhibitor immunotherapy in gastric cancer patients. Front Pharmacol. 2024 May 31;15:1349459. doi: 10.3389/fphar.2024.1349459. PMID: 38881867; PMCID: PMC11176556.
- Rose AAN, Armstrong SM, Hogg D, Butler MO, Saibil SD, Arteaga DP, Pimentel Muniz T, Kelly D, Ghazarian D, King I, Kamil ZS, Ross K, Spreafico A. Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy. J Immunother Cancer. 2021 Jan;9(1):e001642. doi: 10.1136/jitc-2020-001642. PMID: 33483342; PMCID: PMC7831745.
- Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res. 2025 Oct;76:695-713. doi: 10.1016/j.jare.2024.12.043. Epub 2025 Jan 6. PMID: 39778768.
- van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging. 2022 Nov;49(13):4616-4641. doi: 10.1007/s00259-022-05870-1. Epub 2022 Jul 5. PMID: 35788730; PMCID: PMC9606105.
- Gilazieva Z, Ponomarev A, Rutland C, Rizvanov A, Solovyeva V. Promising Applications of Tumor Spheroids and Organoids for Personalized Medicine. Cancers (Basel). 2020 Sep 23;12(10):2727. doi: 10.3390/cancers12102727. PMID: 32977530; PMCID: PMC7598156.






























































