Francis Olawale Abulude*, Akinyemi Albert Fadiyimu, Rasheed Folorunso, Kayode Sule and Ugochi Esther Okpakpor
Volume6-Issue10
Dates: Received: 2025-09-22 | Accepted: 2025-10-18 | Published: 2025-10-20
Pages: 1492-1504
Abstract
A large portion of the world's population depends on poultry for vital goods and services, and substantial production of birds leads to inadequate indoor air quality, air pollutant emissions, and worldwide atmospheric components. Bird buildings are zootechnical structures used for the enhancing and utilization of poultry or laying hens. Because extensive poultry farming amenities include numerous ecological consequences, this study aimed to evaluate the CO2, NO2, O3, PM1, PM2.5, and PM10 of an indoor poultry facility at the Federal College of Agriculture, Akure, Nigeria, over a period of six months using a SentinAir low-cost air quality detector. With their respective interquartiles of 54.77, 11, 4, 8, 12, and 12, the mean findings showed CO2 (592.44 ± 53.15 ppm), NO2 (181.38 ± 16.48 ppb), O3 (68.11 ± 10.06 ppb), PM1 (11.26 ± 7.67 µg/m³), PM2.5 (16.66 ± 11.92 µg/m³), and PM10 (17.66 ± 13.11 µg/m³). The period between 4000 and 5000 was when all contaminants peaked the highest. According to Pearson correlations, there were connections between the pollutants, with PMs exhibiting substantial correlations (0.98-1.00) and NO2 and O3 (r = + 0.79). The workers' possible health risks fall into the moderate and unhealthy for sensitive group categories. Even if the data indicated that there was no risk to the animals or people inside the poultry house, the house nevertheless needs to be continuously monitored.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2205
Certificate of Publication

Copyright
© 2025 JAbulude FO, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Abulude FO, Fadiyimu AA, Folorunso R, Sule K, Okpakpor UE. Trends in Air Pollutants: A Comprehensive Analysis of a Poultry House in Federal College of Agriculture, Akure, Nigeria. J Biomed Res Environ Sci. 2025 Oct 20; 6(10): 1492-1504. doi: 10.37871/jbres2205, Article ID: JBRES2205, Available at: https://www. jelsciences.com/articles/jbres2205.pdf
Subject area(s)
References
- Directive 2010/75 / EU of the European parliament and of the council for the intensive rearing of poultry and pigs.
- Stafie LC, Antohe R. Laying hens in free range system practical growing guide. Waldpress Publishing House. Timisoara. 2018.
- Mitroi R, Stoian O, Mierla CIC, Manea C. Pollutants resulting from intensive poultry farming activities and their impact on the environment. E3S Web of Conferences. 2021;286(3):03018. doi: 10.1051/e3sconf/202128603018.
- Punga I, Iordanov IR. Environmental impact assessment: Case study. AO "EcoContac”. Chisinau: Sn. 2016.
- Hu Y, Cheng H, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ Int. 2017 Oct;107:111-130. doi: 10.1016/j.envint.2017.07.003. Epub 2017 Jul 15. PMID: 28719840.
- Decision no. 964/2000 on the approval of the action plan for the protection of waters against nitrate pollution from agricultural sources with subsequent amendments and completions. FAO. 2000.
- Alionte CG, Comeaga DC. Noise assessment of the small-scale wind farm. E3S Web of Conferences. 2019;112:02011. doi: 10.1051/e3sconf/201911202011.
- Viegas S, Faísca VM, Dias H, Clérigo A, Carolino E, Viegas C. Occupational exposure to poultry dust and effects on the respiratory system in workers. J Toxicol Environ Health A. 2013;76(4-5):230-9. doi: 10.1080/15287394.2013.757199. PMID: 23514065.
- Oppliger A, Charrière N, Droz PO, Rinsoz T. Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann Occup Hyg. 2008 Jul;52(5):405-12. doi: 10.1093/annhyg/men021. Epub 2008 May 22. PMID: 18497431; PMCID: PMC2488377.
- Shen D, Wu S, Dai PY, Li YS, Li CM. Distribution of particulate matter and ammonia and physicochemical properties of fine particulate matter in a layer house. Poult Sci. 2018 Dec 1;97(12):4137-4149. doi: 10.3382/ps/pey285. PMID: 29982840.
- Fernandez AP, Demmers TG, Tong Q, Youssef A,Norton T, Vranken E, Berckmans D. (2019). Real-time modelling of indoor particulate matter concentration in poultry houses using broiler activity and ventilation rate. Biosyst. Eng. 187:214–225. doi: 10.1016/j.biosystemseng.2019.09.004.
- Hu F, Cheng B, Wang-Li L. Characteristics of particulate matter emissions from swine and poultry production houses in the United States. American Society of Agricultural and Biological Engineers. 2021;64(5):1569-1579. doi: 10.13031/trans.14622.
- Corbanie EA, Matthijs MG, van Eck JH, Remon JP, Landman WJ, Vervaet C. Deposition of differently sized airborne microspheres in the respiratory tract of chickens. Avian Pathol. 2006 Dec;35(6):475-85. doi: 10.1080/03079450601028845. PMID: 17121737.
- Riddell C, Schwean K, Classen HL. Inflammation of the bronchi in broiler chickens, associated with barn dust and the influence of barn temperature. Avian. Dis. 1998;42:225-229.
- Terzich M, Quarles C, Goodwin MA, Brown J. Effect of Poultry Litter Treatment(R) (PLT(R)) on the development of respiratory tract lesions in broilers. Avian Pathol. 1998;27(6):566-9. doi: 10.1080/03079459808419385. PMID: 18484274.
- Roque K, Shin KM, Jo JH, Kim HA, Heo Y. Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments. J Vet Sci. 2015;16(2):173-7. doi: 10.4142/jvs.2015.16.2.173. Epub 2014 Dec 24. PMID: 25549222; PMCID: PMC4483500.
- Franzi LM, Linderholm AL, Rabowsky M, Last JA. Lung toxicity in mice of airborne particulate matter from a modern layer hen facility containing Proposition 2-compliant animal caging. Toxicol Ind Health. 2017 Mar;33(3):211-221. doi: 10.1177/0748233716630490. Epub 2016 Jul 9. PMID: 26939833.
- Liu D, Wagner JG, Harkema JR, Gerlofs-Nijland ME, Pinelli E, Folkerts G, Vandebriel RJ, Cassee FR. Livestock farm particulate matter enhances airway inflammation in mice with or without allergic airway disease. World Allergy Organ J. 2020 Apr 3;13(4):100114. doi: 10.1016/j.waojou.2020.100114. PMID: 32256941; PMCID: PMC7132261.
- Le Riche EL, VanderZaag AC, Wagner-Riddle C, Dunfield K, Sokolov VK, Gordon R. Do volatile solids from bedding materials increase greenhouse gas emissions for stored dairy manure? Canadian Journal of Soil Science. 2017;97(3):512-521. doi: 10.1139/cjss-2016-0119.
- Knížatová M, Mihina Š, Brouček J, Karandušovská I, Mačuhová J. The influence of litter age, litter temperature and ventilation rate on ammonia emissions from a broiler rearing facility. Czech Journal of Animal Science. 2010;55: 337.
- Méda B, Hassouna M, Fléchard C, Lecomte M, Germain K, Picard S, Cellier P, Robin P. Housing emissions of NH3, N2O and CH4 and outdoor emissions of CH4 and N2O from organic broilers. In: Köfer J, Schobesberger H, editors. Proceedings of the XVth International Congress of the International Society for Animal Hygiene. Tribun, EU; 2011. p.215-218.
- Calvet S, Cambra-López M, Estellés F, Torres AG. Characterization of gas emissions from a Mediterranean broiler farm. Poult Sci. 2011 Mar;90(3):534-42. doi: 10.3382/ps.2010-01037. PMID: 21325223.
- Dolan A, Ludačková J, Pražma F. Measurement and evaluation of emission gasses production in the selected poultry farm (in Czech). In: Sborník mezinárodní vědecké konference: Technika pro zemědělské, ko-munální a environmentální technologie, oponované příspěvky jako součást časopisu Komunální technika. Praha: Profi Press; 2013:7(5). p.6.
- Jepson KH. Carbon dioxide emission and water evaporation from deep litter systems. J Agr Eng. 2000;77:429-440.
- Wang SY, Huang DJ. Assessment of greenhouse gas emissions from poultry enteric fermentation. Asian-Aust. J Anim Sci. 2005;18(6): 873-878.
- Miles DM, Owens PR, Rowe DE. Spatial variability of litter gaseous flux within a commercial broiler house: ammonia, nitrous oxide, carbon dioxide, and methane. Poult Sci. 2006 Feb;85(2):167-72. doi: 10.1093/ps/85.2.167. PMID: 16523609.
- Al-Kerwi MSM, Mardenli O, Jasim MRM, Al-Majeed MA. Effects of harmful gases emitted from poultry houses on productive and health performance. IOP Conf. Series: Earth and Environmental Science. 2022. doi: 10.1088/1755-1315/1060/1/012082.
- Pedersen S, Blanes-Vidal V, Jørgensen H, Chwalibog A, Haeussermann A, Heetkamp MJW, Aarnink AJA. Carbon dioxide production in animal houses: A literature review. CIGR Ejournal 10: BC. 2008.
- Cândido MGL, Xiong Y, Gates RS, Tinôco IFF, Koelkebeck KW. Effects of carbon dioxide on turkey poult performance and behaviour. Poultry Science. 2018;97(8):2768-2774.
- Schulze A, van Strien R, Ehrenstein V, Schierl R, Küchenhoff H, Radon K. Ambient endotoxin level in an area with intensive livestock production. Ann Agric Environ Med. 2006;13(1):87-91. PMID: 16841878.
- Hartung J, Schulz J. Occupational and Environmental Risks Caused by Bio-Aerosols in and from Farm Animal Hauses. Agricurtular Eng Int CIGR J. 2011;13:1173-1179.
- Szablewski T, Stuper-Szablewska K, Cegielska-Radziejewska R, Tomczyk Ł, Szwajkowska-Michałek L, Nowaczewski S. Comprehensive assessment of environmental pollution in a poultry farm depending on the season and the laying hen breeding system. Animals: an open access journal from MDPI. 2022;12(6):740. doi: 10.3390/ani12060740.
- Hamid A, Ahmad AS, Khan N. Respiratory and other health risks among poultry farm workers and evaluation of management practices in poultry farms. Rev Bras Cienc Avic. 2018;20(1):111-118. doi: 10.1590/1806-9061-2017-0513.
- Okiki AP, Ogbimi OA, Edafiadhe EW. Effects of air-borne hazards on the physical and psychological health of Nigerian poultry workers. Journal of Biology Agriculture and Healthcare. 2013;3(7):102-110
- Suriano D. SentinAir system software: A flexible tool for data acquisition from heterogeneous sensors and devices. SoftwareX. 2020;12. doi: 100589. 10.1016/j.softx.2020.100589.
- Suriano D, Penza M. Assessment of the Performance of a low-cost air quality monitor in an Indoor Environment through different calibration models. Atmosphere. 2022.
- Suriano D, Abulude FO, Penza M. The use of low-cost gas sensors for air quality monitoring with smartphone technology: A preliminary study. Chemosensors. 2025;13:189. doi: 10.3390/ chemosensors13050189.
- Aleixandre M, Gerboles M. Review of small commercial sensors for indicative monitoring of ambient gas. chemical engineering transactions. 2012;30:169-174. doi: 10.3303/CET1230029.
- Particulate Matter (PM) Basics. U.S. Environmental Protection Agency (EPA). 2020.
- Winkel A, Mosquera J, Koerkamp PWGG, Ogink NWM, Aarnink AJA. Emissions of particulate matter from animal houses in the Netherlands. Atmos. Environ. 2015;111:202-212. doi: 10.1016/j.atmosenv.2015.03.047.
- Li M, Zhou Z, Zhang Q, Zhang J, Suo Y, Liu J, Shen D, Luo L, Li Y, Li C. Multivariate analysis for data mining to characterize poultry house environment in winter. Poult Sci. 2024 May;103(5):103633. doi: 10.1016/j.psj.2024.103633. Epub 2024 Mar 8. PMID: 38552343; PMCID: PMC11000107.
- Chai LL, Ni JQ, Chen Y, Diehl CA, Heber AJ, Lim TT. Assessment of long-term gas sampling design at two commercial manure-belt layer barns. J Air Waste Manag Assoc. 2010 Jun;60(6):702-10. doi: 10.3155/1047-3289.60.6.702. PMID: 20564996.
- Alberdi O, Arriaga H, Calvet S, Estelles F, Merino P. Ammonia and greenhouse gas emissions from an enriched cage laying hen facility. Biosyst Eng. 2016;144:1-12. doi: 10.1016/j.biosystemseng.2016.01.009.
- Zheng W, Xiong Y, Gates RS, Wang Y, Koelkebeck KW. Air temperature, carbon dioxide, and ammonia assessment inside a commercial cage layer barn with manure-drying tunnels. Poult Sci. 2020 Aug;99(8):3885-3896. doi: 10.1016/j.psj.2020.05.009. Epub 2020 Jun 17. PMID: 32731975; PMCID: PMC7597998.
- WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide [Internet]. Geneva: World Health Organization; 2021.
- Stuper-Szablewska K, Szablewski T, Nowaczewski S, Gornowicz E Chemical and microbiological hazards related to poultry farming. Medycyna Srodowiskowa. 2018;21:53-63.
- Nimmermark S, Lund V, Gustafsson G, Eduard W. Ammonia, dust and bacteria in welfare-oriented systems for laying hens. Ann Agric Environ Med. 2009;16(1):103-13. PMID: 19630203.
- Reddy AR, Praveen P, Prasadini P, Anuradha A. Assessment of air quality in a poultry house. Journal of Industrial Pollution Control. 2007;23(2):369-372.
- The Intergovernmental Panel on Climate Change (IPCC). In: Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P, Federici S, editors. Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Geneva, Switzerland: IPCC; 2019.
- Bittman S, Dedina M, Howard CM, Oenema O, Sutton MA. Options for ammonia mitigation: guidance from the UNECE task force on reactive nitrogen; Project Reference: CEH Project no. C04910. Edinburgh, UK: NERC/Centre for Ecology & Hydrology; 2014. p.83
- Pereira LS, Garcia J, Trindade H. Review of measures to control airborne pollutants in broiler housing. IntechOpen. 2023. doi: 10.5772/intechopen.110582.
- Cambra-López M, Aarnink AJ, Zhao Y, Calvet S, Torres AG. Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ Pollut. 2010 Jan;158(1):1-17. doi: 10.1016/j.envpol.2009.07.011. Epub 2009 Aug 4. PMID: 19656601.






























































