Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

A Comprehensive Review of Computational Modeling in Tumor and Brain Disorder with a Focus on Ablation Therapies

Medicine Group    Start Submission

Abdollahzadeh Jamalabadi MY

Volume6-Issue10
Dates: Received: 2025-10-08 | Accepted: 2025-10-16 | Published: 2025-10-18
Pages: 1481-1491

Abstract

This review paper provides a comprehensive overview of computational modeling approaches applied to the study of tumors and brain disorders, with a particular focus on ablation therapies. We delve into the fundamental principles governing heat transfer and electric fields in biological tissues, as exemplified by hepatic tumor ablation. A key component of this review is the design and conceptual implementation of a parameter study, demonstrating how variations in electrical, thermal, geometric, and operational parameters can significantly influence ablation outcomes. Through simulated data and visualizations, we illustrate the sensitivity of maximum temperature achieved and necrotic tissue volume to factors such as applied voltage, ablation time, and blood perfusion rates. This work highlights the critical role of computational modeling in optimizing treatment strategies, predicting patient-specific responses, and advancing our understanding of complex biological phenomena in neuro-oncology. The insights gained from such parameter studies are invaluable for guiding the development of more effective and safer therapeutic interventions for brain tumors and related neurological disorders.

FullText HTML FullText PDF DOI: 10.37871/jbres2204


Certificate of Publication




Copyright

© 2025 Jamalabadi MYA. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Jamalabadi MYA. A Comprehensive Review of Computational Modeling in Tumor and Brain Disorder with a Focus on Ablation Therapies. J Biomed Res Environ Sci. 2025 Oct 18; 6(10): 1481-1491. doi: 10.37871/jbres2204, Article ID: JBRES2204, Available at: https://www.jelsciences.com/articles/jbres2204.pdf


Subject area(s)

References


  1. Madhusoodanan S, Ting MB, Farah T, Ugur U. Psychiatric aspects of brain tumors: A review. World J Psychiatry. 2015 Sep 22;5(3):273-85. doi: 10.5498/wjp.v5.i3.273. PMID: 26425442; PMCID: PMC4582304.
  2. Moroşan GC, Moroşan AC, Ionescu C, Sava A. Neuropsychiatric symptoms as early indicators of brain tumors. Arch Clin Cases. 2024 Dec 20;11(4):120-126. doi: 10.22551/2024.45.1104.10302. PMID: 39712552; PMCID: PMC11661549.
  3. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC, Jones DTW, Joyce JA, Kearns P, Kieran MW, Mellinghoff IK, Merchant M, Pfister SM, Pollard SM, Ramaswamy V, Rich JN, Robinson GW, Rowitch DH, Sampson JH, Taylor MD, Workman P, Gilbertson RJ. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019 Aug;16(8):509-520. doi: 10.1038/s41571-019-0177-5. PMID: 30733593; PMCID: PMC6650350.
  4. Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci. 2022 May 30;15:818696. doi: 10.3389/fnmol.2022.818696. PMID: 35706426; PMCID: PMC9190727.
  5. Hepatic tumor ablation. COMSOL Multiphysics Model. 2023.
  6. McFaline-Figueroa JR, Lee EQ. Brain Tumors. Am J Med. 2018 Aug;131(8):874-882. doi: 10.1016/j.amjmed.2017.12.039. Epub 2018 Jan 31. PMID: 29371158.
  7. Juffer AH, Marin U, Niemitalo O, Koivukangas J. Computer Modeling of Brain Tumor Growth. Mini Reviews in Medicinal Chemistry. 2008;8(14):1494-1506. doi: 10.2174/138955708786786471.
  8. Hormuth DA 2nd, Al Feghali KA, Elliott AM, Yankeelov TE, Chung C. Image-based personalization of computational models for predicting response of high-grade glioma to chemoradiation. Sci Rep. 2021 Apr 19;11(1):8520. doi: 10.1038/s41598-021-87887-4. PMID: 33875739; PMCID: PMC8055874.
  9. Mongeon B, Hébert-Doutreloux J, Surendran A, Karimi E, Fiset B, Quail DF, Walsh LA, Jenner AL, Craig M. Spatial computational modelling illuminates the role of the tumour microenvironment for treating glioblastoma with immunotherapies. NPJ Syst Biol Appl. 2024 Aug 18;10(1):91. doi: 10.1038/s41540-024-00419-4. PMID: 39155294; PMCID: PMC11330976.
  10. Miranda A, Cova T, Sousa J, Vitorino C, Pais A. Computational modeling in glioblastoma: from the prediction of blood-brain barrier permeability to the simulation of tumor behavior. Future Med Chem. 2018 Jan;10(1):121-131. doi: 10.4155/fmc-2017-0128. Epub 2017 Dec 13. PMID: 29235374.
  11. Wang Z, Deisboeck TS. Computational modeling of brain tumors: discrete, continuum or hybrid? Scientific Modeling and Simulation SMNS. 2008;15:381-393. doi: 10.1007/s10820-008-9094-0.
  12. Coluccia D, Fandino J, Schwyzer L, O'Gorman R, Remonda L, Anon J, Martin E, Werner B. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound. 2014 Oct 16;2:17. doi: 10.1186/2050-5736-2-17. PMID: 25671132; PMCID: PMC4322509.
  13. Pichaivel M, Anbumani G, Theivendren P, Gopal M. An overview of brain tumor. In: Brain Tumors. IntechOpen. 2022. doi: 10.5772/intechopen.100806.
  14. Aerts H, Schirner M, Jeurissen B, Van Roost D, Achten E, Ritter P, Marinazzo D. Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain. eNeuro. 2018 Jun 4;5(3):ENEURO.0083-18.2018. doi: 10.1523/ENEURO.0083-18.2018. PMID: 29911173; PMCID: PMC6001263.
  15. Andreozzi A, Iasiello M, Vanoli GP. Laser ablation for prostate tumors: Analysis of different bioheat transfer models. International Journal of Thermal Sciences. 2025;211:107456. doi: 10.1016/j.ijthermalsci.2025.110026.
  16. Bhandari A, Singh A, Zhan W. Decoding the effect of different tumor heterogeneities on thermosensitive liposome drug delivery during radiofrequency ablation: A novel heat and mass transfer perspective. International Communications in Heat and Mass Transfer. 2024;153:107456. doi: 10.1016/j.icheatmasstransfer.2024.107390.
  17. Bhandari A, Tripathy KC, Germaneau A. Unveiling human brain tumor response to tumor treating fields mediated thermosensitive liposome drug delivery: A heat and mass transfer optimization. International Journal of Heat and Mass Transfer. 2025;203:107456. doi: 10.1016/j.ijheatmasstransfer.2025.127352.
  18. Preechaphonkul W, Mongkol V, Rattanadecho P. Numerical analysis of heat transfer and tissue deformation in liver cancer during microwave ablation: A comparison of bioheat and porous media models. Thermal Science and Engineering Progress. 2025;47:102456. doi: 10.1016/j.tsep.2025.103739.
  19. Yuan C, Yan X, Yue K, Wang H, Zhang X, Yan D, An C. Optimization of surgical parameters for liver tumor microwave ablation assisted by hydrodissection: Solution space features and active learning approach. Comput Methods Programs Biomed. 2025 Oct;270:108967. doi: 10.1016/j.cmpb.2025.108967. Epub 2025 Jul 14. PMID: 40712370.
  20. Fakhradini SS, Mosharaf-Dehkordi M, Ahmadikia H. Enhancing liver cancer treatment: Exploring the frequency effects of magnetic nanoparticles for heat-based tumor therapy with microwaves. International Journal of Thermal Sciences. 2024;209:107456. doi: 10.1016/j.ijthermalsci.2024.109154.
  21. Kaur T, Devi N, Sharma D. E. coli as a Smart Thermo-Vector for Combating Solid Tumors: A Synergistic Heat-Induced Cancer Therapy Approach. Bioconjug Chem. 2025 Apr 16;36(4):867-880. doi: 10.1021/acs.bioconjchem.5c00102. Epub 2025 Mar 19. PMID: 40105793.
  22. Imanlou S, Vafai K. Analysis of magnetothermal hyperthermia on tumor ablation and Parkinson’s therapy. International Journal of Heat and Mass Transfer. 2026;210:107456.
  23. He J, Shen M, Ye X, Ren X, Chen K, Zhang J, Fan W, Wang Z, Xu Y. Expert consensus on perioperative management for liver tumors treated with co-ablation system therapy. Asia Pac J Oncol Nurs. 2024 Sep 10;11(11):100591. doi: 10.1016/j.apjon.2024.100591. PMID: 39582552; PMCID: PMC11584913.
  24. Adabbo G, Andreozzi A, Iasiello M, Napoli G, Vanoli GP. Multi-objective optimization framework to plan laser ablation procedure for prostate tumors through a genetic algorithm. Comput Methods Programs Biomed. 2025 Jul;267:108827. doi: 10.1016/j.cmpb.2025.108827. Epub 2025 May 2. PMID: 40344998.
  25. Wessapan T, Rattanadecho P. Flow and heat transfer through a porous tumor during high-intensity focused ultrasound. International Journal of Heat and Mass Transfer. 2023;220:115789.
  26. Horvat ID, Iljaž J. Numerical modeling of non-Fourier bioheat transfer in multilayer biological tissue using BEM to simulate dynamic thermography in skin tumor diagnostics. Engineering Analysis with Boundary Elements. 2025;170:107456. doi: 10.1016/j.enganabound.2025.106408.
  27. Suleman M, Majeed U, Kolsi L. Computational modeling of thermal therapy for porous osteosarcoma knee bone tumors using magnetized copper oxide nanoparticles. Case Studies in Thermal Engineering. 2025;47:102456. doi: 10.1016/j.csite.2025.106775.
  28. Wessapan T, Keangin P, Somsuk N. Comparative analysis of heat transfer dynamics in high-intensity focused ultrasound and microwave ablation for cancer treatment. International Journal of Thermofluids. 2025;25:100345. doi: 10.1016/j.ijft.2025.101090.
  29. Gao Y, Huang Z, Chen W, Ma Y, Li X, Wang Y, Wan Y, Liu Y, Yang Y, Li MD, Lee CS, Li S. Stable intermolecular charge-transfer nanocrystals as efficient immunogenic cell death adjuvants for photoimmunotherapy against trophoblastic and recurrent tumors. Biomaterials. 2025 Dec;323:123436. doi: 10.1016/j.biomaterials.2025.123436. Epub 2025 May 27. PMID: 40446712.
  30. Junaid M, Mukaddes AMM, Mahmud-Or-Rashid M. Physical activities aid in tumor prevention: A finite element study of bio-heat transfer in healthy and malignant breast tissues. Heliyon. 2024 Jul 15;10(14):e34650. doi: 10.1016/j.heliyon.2024.e34650. PMID: 39114025; PMCID: PMC11305304.
  31. Jiang Q, Ren F, Tang H. Multiphysics simulation of tumor ablation in magnetic hyperthermia treatment. International Journal of Heat and Mass Transfer. 2025;210:107456. doi: 10.1016/j.ijheatmasstransfer.2025.126982.
  32. Suleman M, Riaz S. Computational modeling of poroelastic brain tumor therapy during heat transfer carrying temperature-dependent blood perfusion. Med Eng Phys. 2022 May;103:103792. doi: 10.1016/j.medengphy.2022.103792. Epub 2022 Mar 24. PMID: 35500993.
  33. Arciga BM, Walters DM, Kimchi ET, Staveley-O'Carroll KF, Li G, Teixeiro E, Rachagani S, Kaifi JT. Pulsed electric field ablation as a candidate to enhance the anti-tumor immune response to immune checkpoint inhibitors. Cancer Lett. 2025 Jan 28;609:217361. doi: 10.1016/j.canlet.2024.217361. Epub 2024 Nov 26. PMID: 39608443; PMCID: PMC11625606.
  34. Gu C, Zhang J, Qi J. Advances and applications of hyperthermia in tumor therapy: Mechanisms, techniques, and clinical integration. International Communications in Heat and Mass Transfer. 2025;154:107456. doi: 10.1016/j.icheatmasstransfer.2025.108895.
  35. Huang L, Qi E, Liu Z, Zhang Q, Wang S, Zheng S, Xie W, Li G, Chen X, Sun H, Liu F, Wang X. Beyond thermal protection: Injectable self-healing chitosan hydrogel in liver tumor thermal ablation. Int J Biol Macromol. 2025 Jun;313:144187. doi: 10.1016/j.ijbiomac.2025.144187. Epub 2025 May 14. PMID: 40379161.
  36. Nishimura K, Kato M, Fukui T, Miura K, Tsuda M, Okada S, Fukushima T, Nakamura H. BODIPY-Based Photothermal Agent Incorporating Azulene for Enhanced NIR Absorption and Tumor Ablation. Mol Pharm. 2025 May 5;22(5):2660-2670. doi: 10.1021/acs.molpharmaceut.5c00071. Epub 2025 Apr 1. PMID: 40167019.
  37. Ismaeel AM, Kamel RS, Hady FM. Numerical simulation for a Maxwell nanofluid with convective heat transfer over a horizontal cylindrical vessel surrounded by hot tissue. Applied Thermal Engineering. 2025;269:123789. doi: 10.1016/j.applthermaleng.2025.127173.
  38. Chlorogiannis DD, Sofocleous CT, Jiang L, Sotirchos VS. PET/CT-guided Tumor Ablation: Technical Insights and Clinical Applications. PET Clin. 2025 Jul;20(3):281-289. doi: 10.1016/j.cpet.2025.03.003. Epub 2025 Apr 28. PMID: 40300984.
  39. Li M, Ye Z, Peng X. Bidirectional pH-responsive O2@perfluorocarbon@cyanine dyes for cascade photothermal therapy and oxygen-releasing enhanced photodynamic tumor treatment. Chemical Engineering Journal. 2025;499:155789. doi: 10.1016/j.cej.2025.164690.
  40. Goldberg SN, Charboneau JW, Dodd GD 3rd, Dupuy DE, Gervais DA, Gillams AR, Kane RA, Lee FT Jr, Livraghi T, McGahan JP, Rhim H, Silverman SG, Solbiati L, Vogl TJ, Wood BJ; International Working Group on Image-Guided Tumor Ablation. Image-guided tumor ablation: proposal for standardization of terms and reporting criteria. Radiology. 2003 Aug;228(2):335-45. doi: 10.1148/radiol.2282021787. PMID: 12893895.
  41. Haemmerich D, Laeseke PF. Thermal tumour ablation: devices, clinical applications and future directions. Int J Hyperthermia. 2005 Dec;21(8):755-60. doi: 10.1080/02656730500226423. PMID: 16338858.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search