Edison Pascal*, Lenin Gonzalez-Paz, Anu00edbal Mendez and Helimar Vasquez
Volume6-Issue10
Dates: Received: 2025-04-21 | Accepted: 2025-10-08 | Published: 2025-10-10
Pages: 1415-1423
Abstract
This research aimed to molecularly analyze the glideosome complex in the parasites Toxoplasma and Plasmodium, comparing it with apicomplexans of interest in arthropods of agricultural importance (such as gregarines), to identify relevant structural and functional similarities and differences in their motility and potential therapeutic targets. Through a systematic review of databases (PubMed, Google Scholar, NCBI, PDB) and comparative analysis of amino acid sequences, we evaluated whether the molecular conformation of the glideosome in arthropod apicomplexans bears similarities to those of medical relevance. The glideosome, essential for gliding locomotion, a movement without morphological changes that facilitates cell invasion, is composed of proteins such as Myosin A (MyoA), its light chain (MLC1/MTIP), and the proteins GAP45 and GAP50. Post-translationally modified (myristoylation, palmitoylation), the latter act as anchors between the motor complex and the parasite's inner membrane. The study revealed notable differences: Toxoplasma gondii MyoA has 1,810 amino acids, while in Gregarina polymorpha it reaches 2,846, suggesting evolutionary adaptations linked to their niches (invasion of mammalian cells vs. extracellular environments in arthropods). Despite these divergences, conserved domains were identified in MyoA, indicating a common functional core for motility. These findings support that the glideosome is an ancestral system optimized for invasion, but with structural variations that reflect ecological pressures. The comparison among apicomplexans positions this complex as a key model for studying pathogenicity mechanisms and developing broad or specific control strategies, depending on the differences identified. This work underscores the importance of comparative approaches for understanding the evolution of molecular systems in parasites with a medical and agricultural impact.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2197
Certificate of Publication

Copyright
© 2025 Pascal E, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Pascal E, González-Paz L, Méndez A and Vásquez H. Molecular Description of the Glideosomatic Complex in the Parasitic Protozoans Toxoplasma and Plasmodium: A Sequence Comparison with Apicomplexans of Interest in the Health of Arthropods of Agricultural Importance. J Biomed Res Environ Sci. 2025 Oct 10; 6(10): 1415-1423. doi: 10.37871/jbres2197, Article ID: JBRES2197, Available at: https://www.jelsciences.com/articles/jbres2197.pdf
Subject area(s)
References
- Unzaga J, Zonta M. Protozoos parásitos de importancia sanitaria: un abordaje transdisciplinar. La Plata: Editorial de la Universidad Nacional de La Plata (EDULP). 2023. doi: 10.35537/10915/154565
- Cazorla Perfetti D, Leal Rojas G, Escalona Nelo Á, Hernández Nava J, Acosta Quintero M, Morales Moreno P. Aspectos clínicos y epidemiológicos de la infección por coccidios intestinales en Urumaco, estado Falcón, Venezuela. Bol Mal Salud Ambient. 2014;54(2):159-73.
- Pascal E, Portillo E, Mendez A, Vasquez H. Relationship between Infection Caused by the Apicomplex Protozoan Nematopsis sp and the Weight of White Shrimp Litopenaeus vannamei in a Cultivation System. J Biomed Res Environ Sci. 2023:13;4(10):1405-1411. doi: 10.37871/jbres1810.
- Sibley LD, Hâkansson S, Carruthers VB. Gliding motility: an efficient mechanism for cell penetration. Curr Biol. 1998 Jan 1;8(1):R12-4. doi: 10.1016/s0960-9822(98)70008-9. PMID: 9427622.
- Boucher LE, Bosch J. The apicomplexan glideosome and adhesins - Structures and function. J Struct Biol. 2015 May;190(2):93-114. doi: 10.1016/j.jsb.2015.02.008. Epub 2015 Mar 9. PMID: 25764948; PMCID: PMC4417069.
- Aguado-García N, Cousin J. Relacion longitud-peso y factor de condición del “camarón rosa” Farfantepenaeus paulensis parasitados con Nematopsis paulensis (Protozoa: Apicomplexa: Porosporidae). Boletín del Instituto Oceanográfico de Venezuela. 2004;43(1&2).
- Rueckert S, Betts EL, Tsaousis AD. The Symbiotic Spectrum: Where Do the Gregarines Fit? Trends Parasitol. 2019 Sep;35(9):687-694. doi: 10.1016/j.pt.2019.06.013. Epub 2019 Jul 22. PMID: 31345767.
- Robert-Paganin J, Robblee JP, Auguin D, Blake TCA, Bookwalter CS, Krementsova EB, Moussaoui D, Previs MJ, Jousset G, Baum J, Trybus KM, Houdusse A. Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. Nat Commun. 2019 Jul 23;10(1):3286. doi: 10.1038/s41467-019-11120-0. PMID: 31337750; PMCID: PMC6650474.
- Hernández R, Fernández C, Baptista P. Metodología de la investigación. Editorial McGraw-Hill; 2014.
- National centre for biotechnology information. Currently Available Genomic Sequences. National Library of Medicine (NIH). 2025.
- Structure of the plasmodium MTIP-MyoA complex, a key component of the parasite invasion motor. Protein Data Bank. 2006.
- Spencer LM, Gómez A, Collovini E. Mecanismos de invasion del esporozoíto y merozoíto de Plasmodium. Bionatura. 2016;1(2):39-44. doi: 10.21931/RB/2016.01.02.9.
- King C, Sleep J. Modelling the mechanism of gregarine gliding using bead translocation. J Eukaryot Microbiol. 2005;52(2):7S-27S. doi: 10.1111/j.1550-7408.2005.05202003_1_41.x.
- Matuschewski K, Schüler H. Actin/myosin-based gliding motility in apicomplexan parasites. Subcell Biochem. 2008;47:110-20. doi: 10.1007/978-0-387-78267-6_9. PMID: 18512346.
- Heintzelman MB. Gliding motility in apicomplexan parasites. Semin Cell Dev Biol. 2015 Oct;46:135-42. doi: 10.1016/j.semcdb.2015.09.020. Epub 2015 Sep 30. PMID: 26428297.
- Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics. 2022 Jul 2;23(1):485. doi: 10.1186/s12864-022-08700-8. PMID: 35780080; PMCID: PMC9250747.
- Pazicky S, Dhamotharan K, Kaszuba K, Mertens HDT, Gilberger T, Svergun D, Kosinski J, Weininger U, Löw C. Structural role of essential light chains in the apicomplexan glideosome. Commun Biol. 2020 Oct 13;3(1):568. doi: 10.1038/s42003-020-01283-8. PMID: 33051581; PMCID: PMC7555893.
- Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D. Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe. 2010 Oct 21;8(4):343-57. doi: 10.1016/j.chom.2010.09.002. PMID: 20951968.
- Wetzel DM, Håkansson S, Hu K, Roos D, Sibley LD. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell. 2003 Feb;14(2):396-406. doi: 10.1091/mbc.e02-08-0458. PMID: 12589042; PMCID: PMC149980.
- Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol. 2024 Feb 13;15:1337478. doi: 10.3389/fimmu.2024.1337478. PMID: 38415253; PMCID: PMC10896991.
- Das T, Yount JS, Hang HC. Protein S-palmitoylation in immunity. Open Biol. 2021 Mar;11(3):200411. doi: 10.1098/rsob.200411. Epub 2021 Mar 3. PMID: 33653086; PMCID: PMC8061762.
- Kumar A, Vadas O, Dos Santos Pacheco N, Zhang X, Chao K, Darvill N, Rasmussen HØ, Xu Y, Lin GM, Stylianou FA, Pedersen JS, Rouse SL, Morgan ML, Soldati-Favre D, Matthews S. Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii. Elife. 2023 Apr 4;12:e86049. doi: 10.7554/eLife.86049. PMID: 37014051; PMCID: PMC10125020.
- Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol. 2022 Nov;7(11):1777-1790. doi: 10.1038/s41564-022-01212-x. Epub 2022 Sep 15. PMID: 36109645.
- Alder A, Wilcke L, Pietsch E, von Thien H, Pazicky S, Löw C, Mesen-Ramirez P, Bachmann A, Burda PC, Kunick C, Sondermann H, Wilson D, Gilberger TW. Functional inactivation of Plasmodium falciparum glycogen synthase kinase GSK3 modulates erythrocyte invasion and blocks gametocyte maturation. J Biol Chem. 2022 Sep;298(9):102360. doi: 10.1016/j.jbc.2022.102360. Epub 2022 Aug 10. PMID: 35961464; PMCID: PMC9478393.
- Guerra Vega AP. Estudio de la miosina B de Plasmodium falciparum y su posible papel en la invasión del parásito al glóbulo rojo [doctoral thesis]. 2019.
- Daher W, Soldati-Favre D. Mechanisms controlling glideosome function in apicomplexans. Curr Opin Microbiol. 2009 Aug;12(4):408-14. doi: 10.1016/j.mib.2009.06.008. Epub 2009 Jul 3. PMID: 19577950.
- Santos JM, Lebrun M, Daher W, Soldati D, Dubremetz JF. Apicomplexan cytoskeleton and motors: key regulators in morphogenesis, cell division, transport and motility. Int J Parasitol. 2009 Jan;39(2):153-62. doi: 10.1016/j.ijpara.2008.10.007. Epub 2008 Nov 6. PMID: 19028497.
- Baum J, Papenfuss AT, Baum B, Speed TP, Cowman AF. Regulation of apicomplexan actin-based motility. Nat Rev Microbiol. 2006 Aug;4(8):621-8. doi: 10.1038/nrmicro1465. PMID: 16845432.
- Quevillon E, Spielmann T, Brahimi K, Chattopadhyay D, Yeramian E, Langsley G. The Plasmodium falciparum family of Rab GTPases. Gene. 2003 Mar 13;306:13-25. doi: 10.1016/s0378-1119(03)00381-0. PMID: 12657463.
- Chattopadhyay N, Wang Z, Ashman LK, Brady-Kalnay SM, Kreidberg JA. alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol. 2003 Dec 22;163(6):1351-62. doi: 10.1083/jcb.200306067. PMID: 14691142; PMCID: PMC2173722.
- Treeck M, Sanders JL, Elias JE, Boothroyd JC. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries. Cell Host Microbe. 2011 Oct 20;10(4):410-9. doi: 10.1016/j.chom.2011.09.004. PMID: 22018241; PMCID: PMC3254672.