Covid-19 Research

Open Access
Research Article
OCLC

Dynamics of Cu2O Rydberg Excitons -Kerr-Effect and Quantum Beats Google Scholar

Read • Cite • Share — permanent Open Access hosting with DOI tracking

Gerard Czajkowski*

Volume6-Issue10
Dates: Received: 2025-09-08 | Accepted: 2025-10-07 | Published: 2025-10-08
Pages: 1401-1407

Abstract

We investigate the nonlinear refraction and the nonlinear Kerr phase shift which are due to Rydberg excitons induced in Cu2O crystal by short-time pulses. We observe the phenomenon of quantum beats, analogous to that observed in exciton emission spectra, obtained in the same conditions. The calculated temporal evolution show dependence on the exciton state number, the applied laser power, and quantities related to dissipative processes.

FullText HTML FullText PDF DOI: 10.37871/jbres2195


Certificate of Publication




Copyright

10.37871/jbres2195

How to cite this article

Czajkowski G. Dynamics of Cu2O Rydberg Excitons -Kerr-Effect and Quantum Beats. J Biomed Res Environ Sci. 2025 Oct 08; 6(10): 1401-1407. doi: 10.37871/jbres2195, Article ID: JBRES2195, Available at: https://www.jelsciences.com/articles/ jbres2195.pdf


Subject area(s)

References


  1. Kazimierczuk T, Fröhlich D, Scheel S, Stolz H, Bayer M. Giant Rydberg excitons in the copper oxide Cu2O. Nature. 2014 Oct 16;514(7522):343-7. doi: 10.1038/nature13832. PMID: 25318523.
  2. Morin C, Tignon J, Mangeney J, Dhillon S, Czajkowski G, Karpiński K, Zielińska-Raczyńska S, Ziemkiewicz D, Boulier T. Self-Kerr Effect across the Yellow Rydberg Series of Excitons in Cu_{2}O. Phys Rev Lett. 2022 Sep 23;129(13):137401. doi: 10.1103/PhysRevLett.129.137401. PMID: 36206429.
  3. Heckötter J, Farenbruch A, Fröhlich D, Aßmann M, Yakovlev DR, Bayer M, Semina MA, Glazov MM, Rommel P, Ertl J, Main J, Stolz H. The energy level spectrum of the yellow excitons in cuprous oxide. Physics Reports. 2025;1100:1-70. doi: 10.1016/j.physrep.2024.10.004.
  4. Chakrabarti P, Morin K, Lagarde D, Marie X, Boulier TH. Direct measurement of the lifetime and coherence time of Cu2O Rydberg excitons. Phys Rev Lett. 2025;134:126902. doi: 10.1103/PhysRevLett.134.126902.
  5. Zielinska-Raczyńska S, Ziemkiewicz D. Quantum interference of Rydberg excitons in Cu20: Quantum beats. Phys Rev B. 2025;111:205201. doi: 10.1103/PhysRevB.111.205201.
  6. Karpinski K, Czajkowski G. Dynamics of Cu2O Rydberg excitons - real density matrix approach. Open Accsess J Phys&Math. 2025;1(2):3068-7527. doi: 10.48550/arXiv.2506.19336.
  7. Ziemkiewicz D, Knez D, Garcia EP, Zielinska-Raczyńska S, Czajkowski G, Salandrino A, Kharintsev SS, Noskov AI, Potma EO, Fishman D. A two-photon absorption in silicon using real density matrix approach. Journ Chem Phys. 2024;161 144117. doi: 10.1063/5.0219329.
  8. Zielinska-Raczyńska S, Czajkowski G, Ziemkiewicz D. Optical properties of rydberg excitons and polaritons. Phys Rev. 2016;93:075206. doi: 10.1103/PhysRevB.93.075206.
  9. Stolz H, Schöne F, Semkat D. Interaction of rydberg excitons in cuprous oxide with phonons and photons: Optical linewidth and polariton effect. New J Phys. 2018;20:023019. doi: 10.1088/1367-2630/aaa396.
  10. Klingshirn C. Semiconductor optics. 4th ed. Berlin. Springer; 2012.


Comments


Publish with JBRES — Peer-reviewed, multidisciplinary Open Access with rapid review, DOI, and global visibility.
Double-Blind CrossRef DOI Discoverable