Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Candida, the Gut Microbiome, and the Epidemic Levels of Cancer and Autoimmune Disease in Young Women, Dementia, and Obesity

Biology Group    Start Submission

Patrick Chambers*

Volume6-Issue9
Dates: Received: 2025-08-18 | Accepted: 2025-09-10 | Published: 2025-09-11
Pages: 1210-1221

Abstract

Candida, especially C. albicans, has traditionally only been framed as an opportunistic infection. Unfortunately this rather limited view has impeded appreciation for this pathobiont and its growing role as a facilitator of gut dysbiosis and limited gut biodiversity. Candida Overgrowth (CO) is linked to a gut microbiome that lacks biodiversity and sufficient butyrogenic bacteria. CO promotes intestinal permeability (leaky gut) and upregulates the estrobolome. The former is associated with dementia and Autoimmune Disease (AID) and the latter with many hormone driven cancers. Most appear to be estrogen receptor positive. Obesity predisposes to CO and to hormone driven cancers, dementia, AID, dementia, Cardiovascular Disease (CVD), and infectious disease. All report Altered Tryptophan Metabolism (ATM). Candida can create its Own Indoleamine Dioxygenase (IDO) to manipulate levels of this essential amino acid that otherwise inhibits hyphal morphogenesis. Candida releases numerous proteases and induces release of bacterial proteases as well. These proteases activate Protease Activated Receptor (PAR2), linked to IBS (Irritable Bowel Syndrome), IBD (Inflammatory Bowel Disease), progression of Estrogen Receptor (ER) positive cancers, and AID. To quell proteolytic hyperactivity, gut microbiota produce an inhibitor - β-glucuronidase. This deconjugates estrogen in bilirubin otherwise destined for excretion, enabling its reabsorption. This Candida enabled increase in circulating estrogen may be the facilitator of this epidemic of cancer and AID in young women. Although the connection between CO and this unforgiving epidemic is provocative and supported by the pathophysiology, definitive clinical confirmation is required.

FullText HTML FullText PDF DOI: 10.37871/jbres2177


Certificate of Publication




Copyright

© 2025 Chambers P. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Chambers P. Candida, the Gut Microbiome, and the Epidemic Levels of Cancer and Autoimmune Disease in Young Women, Dementia, and Obesity. J Biomed Res Environ Sci. 2025 Sept 11; 6(9): 1210-1221. doi: 10.37871/jbres2177, Article ID: JBRES2177, Available at: https://www.jelsciences.com/articles/jbres2177.pdf


Subject area(s)

References


  1. Zhao J, Bai X, Du J, Chen Y, Guo X, Zhang J, Gan J, Wu P, Chen S, Zhang X, Yang J, Jin J, Gao L. Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review). Oncol Rep. 2025 Jul;54(1):86. doi: 10.3892/or.2025.8919. Epub 2025 May 30. PMID: 40444491; PMCID: PMC12139378.
  2. Li D, Yu S, Long Y, Shi A, Deng J, Ma Y, Wen J, Li X, Liu S, Zhang Y, Wan J, Li N, Ao R. Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders. Front Immunol. 2022 Sep 8;13:985378. doi: 10.3389/fimmu.2022.985378. PMID: 36159806; PMCID: PMC9496178.
  3. Zhang J, Jiang X, Pang B, Dongyun Li, Kang L, Zhou L, Wang B, Zheng L, Zhou cm, Zhang L. Association between tryptophan concentrations and the risk of developing cardiovascular diseases: A systematic review and meta-analysis. Nutr Metab (Lond). 2024. doi: 10.1186/s12986-024-00857-1.
  4. Brown J, Robusto B, Morel L. Intestinal Dysbiosis and Tryptophan Metabolism in Autoimmunity. Front Immunol. 2020 Aug 4;11:1741. doi: 10.3389/fimmu.2020.01741. PMID: 32849620; PMCID: PMC7417361.
  5. Cussotto S, Delgado I, Anesi A, Dexpert S, Aubert A, Beau C, Forestier D, Ledaguenel P, Magne E, Mattivi F, Capuron L. Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated With Systemic Inflammation. Front Immunol. 2020 Apr 15;11:557. doi: 10.3389/fimmu.2020.00557. PMID: 32351500; PMCID: PMC7174689.
  6. Takeshita H, Yamamoto K. Tryptophan Metabolism and COVID-19-Induced Skeletal Muscle Damage: Is ACE2 a Key Regulator? Front Nutr. 2022 Apr 8;9:868845. doi: 10.3389/fnut.2022.868845. PMID: 35463998; PMCID: PMC9028463.
  7. Essex M, Millet Pascual-Leone B, Löber U, Kuhring M, Zhang B, Brüning U, Fritsche-Guenther R, Krzanowski M, Fiocca Vernengo F, Brumhard S, Röwekamp I, Anna Bielecka A, Lesker TR, Wyler E, Landthaler M, Mantei A, Meisel C, Caesar S, Thibeault C, Corman VM, Marko L, Suttorp N, Strowig T, Kurth F, Sander LE, Li Y, Kirwan JA, Forslund SK, Opitz B. Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19. NPJ Biofilms Microbiomes. 2024 Aug 1;10(1):66. doi: 10.1038/s41522-024-00538-0. PMID: 39085233; PMCID: PMC11291933.
  8. Al-Hakeim HK, Khairi Abed A, Rouf Moustafa S, Almulla AF, Maes M. Tryptophan catabolites, inflammation, and insulin resistance as determinants of chronic fatigue syndrome and affective symptoms in long COVID. Front Mol Neurosci. 2023 Jun 2;16:1194769. doi: 10.3389/fnmol.2023.1194769. PMID: 37333619; PMCID: PMC10272345.
  9. Bozza S, Fallarino F, Pitzurra L, Zelante T, Montagnoli C, Bellocchio S, Mosci P, Vacca C, Puccetti P, Romani L. A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol. 2005 Mar 1;174(5):2910-8. doi: 10.4049/jimmunol.174.5.2910. PMID: 15728502.
  10. Yuasa HJ, Ball HJ. Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. J Exp Zool B Mol Dev Evol. 2015 Mar;324(2):128-40. doi: 10.1002/jez.b.22608. Epub 2015 Feb 20. PMID: 25702628.
  11. Martin-Gallausiaux C, Larraufie P, Jarry A, Béguet-Crespel F, Marinelli L, Ledue F, Reimann F, Blottière HM, Lapaque N. Butyrate Produced by Commensal Bacteria Down-Regulates Indolamine 2,3-Dioxygenase 1 (IDO-1) Expression via a Dual Mechanism in Human Intestinal Epithelial Cells. Front Immunol. 2018 Dec 11;9:2838. doi: 10.3389/fimmu.2018.02838. PMID: 30619249; PMCID: PMC6297836.
  12. Sun H, Hao Y, Liu H, Gao F. The immunomodulatory effects of GLP-1 receptor agonists in neurogenerative diseases and ischemic stroke treatment. Front Immunol. 2025 Mar 11;16:1525623. doi: 10.3389/fimmu.2025.1525623. PMID: 40134421; PMCID: PMC11932860.
  13. Bozza S, Fallarino F, Pitzurra L, Zelante T, Montagnoli C, Bellocchio S, Mosci P, Vacca C, Puccetti P, Romani L. A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol. 2005 Mar 1;174(5):2910-8. doi: 10.4049/jimmunol.174.5.2910. PMID: 15728502.
  14. Myint K, Jacobs K, Myint AM, Lam SK, Henden L, Hoe SZ, Guillemin GJ. Effects of stress associated with academic examination on the kynurenine pathway profile in healthy students. PLoS One. 2021 Jun 3;16(6):e0252668. doi: 10.1371/journal.pone.0252668. PMID: 34081742; PMCID: PMC8174692.
  15. Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, Yusoff MSB, Wahid N, Abdullah MFIL, Zakaria N, Ong KL, Park YH, Liong MT. Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled study. Benef Microbes. 2019 Apr 19;10(4):355-373. doi: 10.3920/BM2018.0135. Epub 2019 Mar 18. PMID: 30882244.
  16. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Koga N, Hattori K, Ota M, Kunugi H. Bifidobacterium and Lactobacillus Counts in the Gut Microbiota of Patients With Bipolar Disorder and Healthy Controls. Front Psychiatry. 2019 Jan 18;9:730. doi: 10.3389/fpsyt.2018.00730. PMID: 30713509; PMCID: PMC6346636.
  17. Li Z, Denning DW. The Impact of Corticosteroids on the Outcome of Fungal Disease: a Systematic Review and Meta-analysis. Curr Fungal Infect Rep. 2023;17(1):54-70. doi: 10.1007/s12281-023-00456-2. Epub 2023 Feb 23. PMID: 36852004; PMCID: PMC9947451.
  18. Hickmott AJ, Boose KJ, Wakefield ML, Brand CM, Snodgrass JJ, Ting N, White FJ. A comparison of faecal glucocorticoid metabolite concentration and gut microbiota diversity in bonobos (Pan paniscus). Microbiology (Reading). 2022 Aug;168(8). doi: 10.1099/mic.0.001226. PMID: 35960548.
  19. Taleb S. Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases. Front Immunol. 2019 Sep 10;10:2113. doi: 10.3389/fimmu.2019.02113. PMID: 31552046; PMCID: PMC6746884.
  20. Zhang R, Ding N, Feng X, Liao W. The gut microbiome, immune modulation, and cognitive decline: insights on the gut-brain axis. Front Immunol. 2025 Jan 22;16:1529958. doi: 10.3389/fimmu.2025.1529958. PMID: 39911400; PMCID: PMC11794507.
  21. Jandl B, Dighe S, Baumgartner M, Makristathis A, Gasche C, Muttenthaler M. Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies. Gastroenterology. 2024 Nov;167(6):1098-1112.e5. doi: 10.1053/j.gastro.2024.04.032. Epub 2024 Jun 12. PMID: 38876174.
  22. Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS. 2023 Nov;131(11):636-653. doi: 10.1111/apm.13310. Epub 2023 Mar 29. PMID: 36932821.
  23. Suresh Unniachan A, Krishnavilasom Jayakumari N, Sethuraman S. Association between Candida species and periodontal disease: A systematic review. Curr Med Mycol. 2020 Jun;6(2):63-68. doi: 10.18502/CMM.6.2.3420. PMID: 33628985; PMCID: PMC7888513.
  24. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. ScientificWorldJournal. 2020 May 28;2020:2146160. doi: 10.1155/2020/2146160. PMID: 32549797; PMCID: PMC7275199.
  25. Chambers PW. Candida hyphae and healthspan: Hypothesis. Microbes and Immunity. 2024. doi: 10.36922/mi.4736
  26. Prado MM, Figueiredo N, Pimenta AL, Miranda TS, Feres M, Figueiredo LC, de Almeida J, Bueno-Silva B. Recent Updates on Microbial Biofilms in Periodontitis: An Analysis of In Vitro Biofilm Models. Adv Exp Med Biol. 2022;1373:159-174. doi: 10.1007/978-3-030-96881-6_8. PMID: 35612797.
  27. Hwang G. In it together: Candida-bacterial oral biofilms and therapeutic strategies. Environ Microbiol Rep. 2022 Apr;14(2):183-196. doi: 10.1111/1758-2229.13053. Epub 2022 Feb 26. PMID: 35218311; PMCID: PMC8957517.
  28. de Jongh CA, Bikker FJ, de Vries TJ, Werner A, Gibbs S, Krom BP. Porphyromonas gingivalis interaction with Candida albicans allows for aerobic escape, virulence and adherence. Biofilm. 2023 Dec 17;7:100172. doi: 10.1016/j.bioflm.2023.100172. PMID: 38226024; PMCID: PMC10788424.
  29. Reytor-González C, Parise-Vasco JM, González N, Simancas-Racines A, Zambrano-Villacres R, Zambrano AK, Simancas-Racines D. Obesity and periodontitis: a comprehensive review of their interconnected pathophysiology and clinical implications. Front Nutr. 2024 Aug 7;11:1440216. doi: 10.3389/fnut.2024.1440216. PMID: 39171112; PMCID: PMC11335523.
  30. Sulaiman Y, Pacauskienė IM, Šadzevičienė R, Anuzyte R. Oral and Gut Microbiota Dysbiosis Due to Periodontitis: Systemic Implications and Links to Gastrointestinal Cancer: A Narrative Review. Medicina (Kaunas). 2024 Aug 29;60(9):1416. doi: 10.3390/medicina60091416. PMID: 39336457; PMCID: PMC11433653.
  31. Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal disease and cancer: Epidemiologic studies and possible mechanisms. Periodontol 2000. 2020 Jun;83(1):213-233. doi: 10.1111/prd.12329. PMID: 32385885; PMCID: PMC7328760.
  32. Beydoun MA, Beydoun HA, Hossain S, El-Hajj ZW, Weiss J, Zonderman AB. Clinical and Bacterial Markers of Periodontitis and Their Association with Incident All-Cause and Alzheimer's Disease Dementia in a Large National Survey. J Alzheimers Dis. 2020;75(1):157-172. doi: 10.3233/JAD-200064. PMID: 32280099; PMCID: PMC11008556.
  33. Leng Y, Hu Q, Ling Q, Yao X, Liu M, Chen J, Yan Z, Dai Q. Periodontal disease is associated with the risk of cardiovascular disease independent of sex: A meta-analysis. Front Cardiovasc Med. 2023 Feb 27;10:1114927. doi: 10.3389/fcvm.2023.1114927. PMID: 36923959; PMCID: PMC10010192.
  34. Kurgan Ş, Önder C, Balcı N, Akdoğan N, Altıngöz SM, Serdar MA, Günhan M. Influence of periodontal inflammation on tryptophan-kynurenine metabolism: a cross-sectional study. Clin Oral Investig. 2022 Sep;26(9):5721-5732. doi: 10.1007/s00784-022-04528-4. Epub 2022 May 19. PMID: 35588020.
  35. Trimarchi M, Lauritano D, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Calvisi V, Conti P. Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37. Int J Mol Sci. 2022 Oct 31;23(21):13242. doi: 10.3390/ijms232113242. PMID: 36362030; PMCID: PMC9654575.
  36. Lagdive SS, Lagdive SB, Mani A, Anarthe R, Pendyala G, Pawar B, Marawar PP. Correlation of mast cells in periodontal diseases. J Indian Soc Periodontol. 2013 Jan;17(1):63-7. doi: 10.4103/0972-124X.107500. PMID: 23633775; PMCID: PMC3636948.
  37. Yu M, Song XT, Liu B, Luan TT, Liao SL, Zhao ZT. The Emerging Role of Mast Cells in Response to Fungal Infection. Front Immunol. 2021 Jun 3;12:688659. doi: 10.3389/fimmu.2021.688659. PMID: 34149729; PMCID: PMC8209461.
  38. Bonamichi-Santos R, Yoshimi-Kanamori K, Giavina-Bianchi P, Aun MV. Association of Postural Tachycardia Syndrome and Ehlers-Danlos Syndrome with Mast Cell Activation Disorders. Immunol Allergy Clin North Am. 2018 Aug;38(3):497-504. doi: 10.1016/j.iac.2018.04.004. Epub 2018 Jun 9. PMID: 30007466.
  39. Hamrefors V, Kahn F, Holmqvist M, Carlson K, Varjus R, Gudjonsson A, Fedorowski A, Ohlsson B. Gut microbiota composition is altered in postural orthostatic tachycardia syndrome and post-acute COVID-19 syndrome. Sci Rep. 2024 Feb 9;14(1):3389. doi: 10.1038/s41598-024-53784-9. PMID: 38336892; PMCID: PMC10858216.
  40. Alomari M, Hitawala A, Chadalavada P, Covut F, Al Momani L, Khazaaleh S, Gosai F, Al Ashi S, Abushahin A, Schneider A. Prevalence and Predictors of Gastrointestinal Dysmotility in Patients with Hypermobile Ehlers-Danlos Syndrome: A Tertiary Care Center Experience. Cureus. 2020 Apr 29;12(4):e7881. doi: 10.7759/cureus.7881. PMID: 32489735; PMCID: PMC7255528.
  41. Abigail E, Haytham E. Assessment of the relevance of intestinal zonulin test for inflammatory conditions in an integrated clinical setting. 2018. doi: 10.13140/RG.2.2.29098.16326 .
  42. Singh P, Silvester J, Chen X, Xu H, Sawhney V, Rangan V, Iturrino J, Nee J, Duerksen DR, Lembo A. Serum zonulin is elevated in IBS and correlates with stool frequency in IBS-D. United European Gastroenterol J. 2019 Jun;7(5):709-715. doi: 10.1177/2050640619826419. Epub 2019 Jan 19. PMID: 31210949; PMCID: PMC6545708.
  43. Corouge M, Loridant S, Fradin C, Salleron J, Damiens S, Moragues MD, Souplet V, Jouault T, Robert R, Dubucquoi S, Sendid B, Colombel JF, Poulain D. Humoral immunity links Candida albicans infection and celiac disease. PLoS One. 2015 Mar 20;10(3):e0121776. doi: 10.1371/journal.pone.0121776. PMID: 25793717; PMCID: PMC4368562.
  44. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, De Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr. 2010 Oct;51(4):418-24. doi: 10.1097/MPG.0b013e3181dcc4a5. PMID: 20683204.
  45. Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet. 2000 Apr 29;355(9214):1518-9. doi: 10.1016/S0140-6736(00)02169-3. PMID: 10801176.
  46. Vanuytsel T, Vermeire S, Cleynen I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers. 2013 Dec 1;1(5):e27321. doi: 10.4161/tisb.27321. Epub 2013 Dec 10. PMID: 24868498; PMCID: PMC3943850.
  47. Malíčková K, Francová I, Lukáš M, Kolář M, Králíková E, Bortlík M, Ďuricová D, Štěpánková L, Zvolská K, Pánková A, Zima T. Fecal zonulin is elevated in Crohn's disease and in cigarette smokers. Pract Lab Med. 2017 Sep 23;9:39-44. doi: 10.1016/j.plabm.2017.09.001. PMID: 29034305; PMCID: PMC5633835.
  48. de Kort S, Keszthelyi D, Masclee AA. Leaky gut and diabetes mellitus: what is the link? Obes Rev. 2011 Jun;12(6):449-58. doi: 10.1111/j.1467-789X.2010.00845.x. Epub 2011 Mar 8. PMID: 21382153.
  49. Zhang D, Zhang L, Zheng Y, Yue F, Russell RD, Zeng Y. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract. 2014 Nov;106(2):312-8. doi: 10.1016/j.diabres.2014.08.017. Epub 2014 Sep 6. PMID: 25238913.
  50. Damms-Machado A, Louis S, Schnitzer A, Volynets V, Rings A, Basrai M, Bischoff SC. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr. 2017 Jan;105(1):127-135. doi: 10.3945/ajcn.116.131110. Epub 2016 Nov 9. PMID: 28049662.
  51. Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023 Feb;80:102266. doi: 10.1016/j.coi.2022.102266. Epub 2022 Nov 26. PMID: 36446151; PMCID: PMC9918670.
  52. Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, Gorman N, Palmer CS, Tang HY, Shaikh MW, Forsyth CB, Balk RA, Zilberstein NF, Liu Q, Kossenkov A, Keshavarzian A, Landay A, Abdel-Mohsen M. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front Immunol. 2021 Jun 9;12:686240. doi: 10.3389/fimmu.2021.686240. Erratum in: Front Immunol. 2021 Oct 04;12:779064. doi: 10.3389/fimmu.2021.779064. PMID: 34177935; PMCID: PMC8219958.
  53. Marino M, Mignozzi S, Michels KB, Cintolo M, Penagini R, Gargari G, Ciafardini C, Ferraroni M, Patel L, Del Bo' C, Leone P, Airoldi A, Vecchi M, Bonzi R, Oreggia B, Carnevali P, Vangeli M, Mutignani M, Guglielmetti S, Riso P, La Vecchia C, Rossi M. Serum zonulin and colorectal cancer risk. Sci Rep. 2024 Nov 15;14(1):28171. doi: 10.1038/s41598-024-76697-z. PMID: 39548152; PMCID: PMC11568146.
  54. Boschetti E, Caio G, Cervellati C, Costanzini A, Rosta V, Caputo F, De Giorgio R, Zuliani G. Serum zonulin levels are increased in Alzheimer's disease but not in vascular dementia. Aging Clin Exp Res. 2023 Sep;35(9):1835-1843. doi: 10.1007/s40520-023-02463-2. Epub 2023 Jun 19. PMID: 37337075; PMCID: PMC10460299.
  55. Violi F, Nocella C. Editorial: Gut permeability-related endotoxemia and cardiovascular disease: A new clinical challenge. Front Cardiovasc Med. 2023 Mar 21;10:1118625. doi: 10.3389/fcvm.2023.1118625. PMID: 37025675; PMCID: PMC10071368.
  56. Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunol. 2021 Apr 22;12:673708. doi: 10.3389/fimmu.2021.673708. PMID: 33968085; PMCID: PMC8100306.
  57. Moreno-Navarrete JM, Sabater M, Ortega F, Ricart W, Fernández-Real JM. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One. 2012;7(5):e37160. doi: 10.1371/journal.pone.0037160. Epub 2012 May 18. PMID: 22629362; PMCID: PMC3356365.
  58. Mouchati C, Durieux JC, Zisis SN, Labbato D, Rodgers MA, Ailstock K, Reinert BL, Funderburg NT, McComsey GA. Increase in gut permeability and oxidized ldl is associated with post-acute sequelae of SARS-CoV-2. Front Immunol. 2023 May 12;14:1182544. doi: 10.3389/fimmu.2023.1182544. PMID: 37251403; PMCID: PMC10217362.
  59. Mokkala K, Pellonperä O, Röytiö H, Pussinen P, Rönnemaa T, Laitinen K. Increased intestinal permeability, measured by serum zonulin, is associated with metabolic risk markers in overweight pregnant women. Metabolism. 2017 Apr;69:43-50. doi: 10.1016/j.metabol.2016.12.015. Epub 2017 Jan 4. PMID: 28285651.
  60. Aasbrenn M, Lydersen S, Farup PG. Changes in serum zonulin in individuals with morbid obesity after weight-loss interventions: a prospective cohort study. BMC Endocr Disord. 2020 Jul 22;20(1):108. doi: 10.1186/s12902-020-00594-5. PMID: 32698783; PMCID: PMC7374843.
  61. García-Gamboa R, Kirchmayr MR, Gradilla-Hernández MS, Pérez-Brocal V, Moya A, González-Avila M. The intestinal mycobiota and its relationship with overweight, obesity and nutritional aspects. J Hum Nutr Diet. 2021 Aug;34(4):645-655. doi: 10.1111/jhn.12864. Epub 2021 Feb 15. PMID: 33586805.
  62. CDC childhood obesity facts. 2024.
  63. Emmerich SD, Fryar CD, Stierman B, Ogden CL. Obesity and Severe Obesity Prevalence in Adults: United States, August 2021-August 2023. NCHS Data Brief. 2024 Sep;(508):10.15620/cdc/159281. doi: 10.15620/cdc/159281. PMID: 39808758; PMCID: PMC11744423.
  64. Kumwenda P, Cottier F, Hendry AC, Kneafsey D, Keevan B, Gallagher H, Tsai HJ, Hall RA. Estrogen promotes innate immune evasion of Candida albicans through inactivation of the alternative complement system. Cell Rep. 2022 Jan 4;38(1):110183. doi: 10.1016/j.celrep.2021.110183. PMID: 34986357; PMCID: PMC8755443.
  65. Karpuzoglu-Sahin E, Hissong BD, Ansar Ahmed S. Interferon-gamma levels are upregulated by 17-beta-estradiol and diethylstilbestrol. J Reprod Immunol. 2001 Oct-Nov;52(1-2):113-27. doi: 10.1016/s0165-0378(01)00117-6. PMID: 11600182.
  66. Schreurs MPH, de Vos van Steenwijk PJ, Romano A, Dieleman S, Werner HMJ. How the Gut Microbiome Links to Menopause and Obesity, with Possible Implications for Endometrial Cancer Development. J Clin Med. 2021 Jun 29;10(13):2916. doi: 10.3390/jcm10132916. PMID: 34209916; PMCID: PMC8268108.
  67. Kuryłowicz A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines. 2023 Feb 24;11(3):690. doi: 10.3390/biomedicines11030690. PMID: 36979669; PMCID: PMC10045924.
  68. Hu S, Ding Q, Zhang W, Kang M, Ma J, Zhao L. Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism. Gut Microbes. 2023 Jan-Dec;15(1):2236749. doi: 10.1080/19490976.2023.2236749. PMID: 37559394; PMCID: PMC10416750.
  69. Zhou Z, Zhang L, Ding M, Luo Z, Yuan S, Bansal MB, Gilkeson G, Lang R, Jiang W. Estrogen decreases tight junction protein ZO-1 expression in human primary gut tissues. Clin Immunol. 2017 Oct;183:174-180. doi: 10.1016/j.clim.2017.08.019. Epub 2017 Sep 1. PMID: 28867253; PMCID: PMC5673541.
  70. Bras G, Satala D, Juszczak M, Kulig K, Wronowska E, Bednarek A, Zawrotniak M, Rapala-Kozik M, Karkowska-Kuleta J. Secreted Aspartic Proteinases: Key Factors in Candida Infections and Host-Pathogen Interactions. Int J Mol Sci. 2024 Apr 27;25(9):4775. doi: 10.3390/ijms25094775. PMID: 38731993; PMCID: PMC11084781.
  71. Caminero A, Guzman M, Libertucci J, Lomax AE. The emerging roles of bacterial proteases in intestinal diseases. Gut Microbes. 2023 Jan-Dec;15(1):2181922. doi: 10.1080/19490976.2023.2181922. PMID: 36843008; PMCID: PMC9980614.
  72. Edwinson AL, Yang L, Peters S, Hanning N, Jeraldo P, Jagtap P, Simpson JB, Yang TY, Kumar P, Mehta S, Nair A, Breen-Lyles M, Chikkamenahalli L, Graham RP, De Winter B, Patel R, Dasari S, Kashyap P, Griffin T, Chen J, Farrugia G, Redinbo MR, Grover M. Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat Microbiol. 2022 May;7(5):680-694. doi: 10.1038/s41564-022-01103-1. Epub 2022 Apr 28. PMID: 35484230; PMCID: PMC9081267.
  73. Kumar R, Rojas IG, Edgerton M. Candida albicans Sap6 Initiates Oral Mucosal Inflammation via the Protease Activated Receptor PAR2. Front Immunol. 2022 Jun 29;13:912748. doi: 10.3389/fimmu.2022.912748. PMID: 35844627; PMCID: PMC9277060.
  74. Rondeau LE, Da Luz BB, Santiago A, Bermudez-Brito M, Hann A, De Palma G, Jury J, Wang X, Verdu EF, Galipeau HJ, Rolland C, Deraison C, Ruf W, Bercik P, Vergnolle N, Caminero A. Proteolytic bacteria expansion during colitis amplifies inflammation through cleavage of the external domain of PAR2. Gut Microbes. 2024 Jan-Dec;16(1):2387857. doi: 10.1080/19490976.2024.2387857. Epub 2024 Aug 22. PMID: 39171684; PMCID: PMC11346554.
  75. Lakemeyer M, Latorre R, Blazkova K, Jensen D, Wood HM, Shakil N, Thomas SC, Saxena D, Mulpuri Y, Poolman D, de Haro PD, Keller LJ, Reed DE, Schmidt BL, Lomax AE, Bunnett NW, Bogyo M. Identification of a secreted protease from Bacteroides fragilis that induces intestinal pain and inflammation by cleavage of PAR2. bioRxiv [Preprint]. 2025 Jan 15:2025.01.15.633241. doi: 10.1101/2025.01.15.633241. PMID: 39868234; PMCID: PMC11761754.
  76. Shah H, Fairlie DP, Lim J. Protease-activated receptor 2: A promising therapeutic target for women's cancers. J Pharmacol Exp Ther. 2025 Jan;392(1):100016. doi: 10.1124/jpet.124.002176. Epub 2024 Nov 22. PMID: 39892996.
  77. Khoon L, Piran R. A New Strategy in Modulating the Protease-Activated Receptor 2 (Par2) in Autoimmune Diseases. Int J Mol Sci. 2025 Jan 6;26(1):410. doi: 10.3390/ijms26010410. PMID: 39796264; PMCID: PMC11722080.
  78. Kasper L, König A, Koenig PA, Gresnigt MS, Westman J, Drummond RA, Lionakis MS, Groß O, Ruland J, Naglik JR, Hube B. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun. 2018 Oct 15;9(1):4260. doi: 10.1038/s41467-018-06607-1. PMID: 30323213; PMCID: PMC6189146.
  79. Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina AI, Kumar R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol Nutr Food Res. 2024 Mar;68(6):e2300688. doi: 10.1002/mnfr.202300688. Epub 2024 Feb 11. PMID: 38342595.
  80. Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel). 2023 Jan 17;11(2):204. doi: 10.3390/vaccines11020204. PMID: 36851081; PMCID: PMC9968219.
  81. Chambers PW. The Candida Covid connection: Preexisting candida overgrowth and gut dysbiosis drives long Covid. J. Neuroscience and Neurological Surgery. 2023. doi: 10.31579/2578-8868/283.
  82. Zhang J, Lacroix C, Wortmann E, Ruscheweyh HJ, Sunagawa S, Sturla SJ, Schwab C. Gut microbial beta-glucuronidase and glycerol/diol dehydratase activity contribute to dietary heterocyclic amine biotransformation. BMC Microbiol. 2019 May 16;19(1):99. doi: 10.1186/s12866-019-1483-x. PMID: 31096909; PMCID: PMC6524314.
  83. Hillege LE, Stevens MAM, Kristen PAJ, de Vos-Geelen J, Penders J, Redinbo MR, Smidt ML. The role of gut microbial β-glucuronidases in carcinogenesis and cancer treatment: a scoping review. J Cancer Res Clin Oncol. 2024 Nov 13;150(11):495. doi: 10.1007/s00432-024-06028-2. PMID: 39537966; PMCID: PMC11561038.
  84. Fernández-Murga ML, Gil-Ortiz F, Serrano-García L, Llombart-Cussac A. A New Paradigm in the Relationship between Gut Microbiota and Breast Cancer: β-glucuronidase Enzyme Identified as Potential Therapeutic Target. Pathogens. 2023 Aug 26;12(9):1086. doi: 10.3390/pathogens12091086. PMID: 37764894; PMCID: PMC10535898.
  85. Sperker B, Werner U, Mürdter TE, Tekkaya C, Fritz P, Wacke R, Adam U, Gerken M, Drewelow B, Kroemer HK. Expression and function of beta-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn Schmiedebergs Arch Pharmacol. 2000 Aug;362(2):110-5. doi: 10.1007/s002100000260. PMID: 10961372.
  86. Kawai H. Estrogen receptors as the novel therapeutic biomarker in non-small cell lung cancer. World J Clin Oncol. 2014 Dec 10;5(5):1020-7. doi: 10.5306/wjco.v5.i5.1020. PMID: 25493237; PMCID: PMC4259928.
  87. Labuschagne CF, Smith R, Kumar N, Allswort M, Boyle B, Janes S, Crosbie p, Rintoul R. Breath biopsy early detection of lung cancer using an EVOC probe targeting tumor-specific extracellular β-glucuronidase. Journal of Clinical Oncology. 2022. doi: 10.1200/JCO.2022.40.16_suppl.2569.
  88. Seeliger H, Pozios I, Assmann G, Zhao Y, Müller MH, Knösel T, Kreis ME, Bruns CJ. Expression of estrogen receptor beta correlates with adverse prognosis in resected pancreatic adenocarcinoma. BMC Cancer. 2018 Oct 29;18(1):1049. doi: 10.1186/s12885-018-4973-6. PMID: 30373552; PMCID: PMC6206939.
  89. Ge Y, Ni X, Li J, Ye M, Jin X. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett. 2023 Oct 25;26(6):530. doi: 10.3892/ol.2023.14117. PMID: 38020303; PMCID: PMC10644365.
  90. Tang W, Liu R, Yan Y, Pan X, Wang M, Han X, Ren H, Zhang Z. Expression of estrogen receptors and androgen receptor and their clinical significance in gastric cancer. Oncotarget. 2017 Jun 20;8(25):40765-40777. doi: 10.18632/oncotarget.16582. PMID: 28388558; PMCID: PMC5522298.
  91. Su R, Chen L, Jiang Z, Yu M, Zhang W, Ma Z, Ji Y, Shen K, Xin Z, Qi J, Xue W, Wang Q. Comprehensive analysis of androgen receptor status in prostate cancer with neuroendocrine differentiation. Front Oncol. 2022 Aug 9;12:955166. doi: 10.3389/fonc.2022.955166. PMID: 36033483; PMCID: PMC9413533.
  92. Zhao J, Xu L, Sun J, Song M, Wang L, Yuan S, Zhu Y, Wan Z, Larsson S, Tsilidis K, Dunlop M, Campbell H, Rudan I, Song P, Theodoratou E, Ding K, Li X. Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncol. 2023 Sep 5;2(1):e000049. doi: 10.1136/bmjonc-2023-000049. PMID: 39886513; PMCID: PMC11235000.
  93. Viehweger F, Gusinde J, Leege N, Tinger LM, Gorbokon N, Menz A, Schlichter R, Hinsch A, Dum D, Bernreuther C, Weidemann S, Lutz F, Kind S, Chirico V, Möller K, Reiswich V, Luebke AM, Freytag M, Lennartz M, Jacobsen F, Clauditz TS, Burandt E, Krech T, Lebok P, Fraune C, Marx AH, Simon R, Kluth M, Hube-Magg C, Wilczak W, Steurer S, Sauter G, Minner S. Estrogen receptor expression in human tumors: A tissue microarray study evaluating more than 18,000 tumors from 149 different entities. Hum Pathol. 2025 Mar;157:105757. doi: 10.1016/j.humpath.2025.105757. Epub 2025 Mar 5. PMID: 40054585.
  94. Jalali-Nadoushan MR, Amirtouri R, Davati A, Askari S, Siadati S. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma. Caspian J Intern Med. 2016 Summer;7(3):183-187. PMID: 27757203; PMCID: PMC5062176.
  95. Madeshwaran A, Vijayalakshmi P, Umapathy VR, Shanmugam R, Selvaraj C. Unlocking estrogen receptor: Structural insights into agonists and antagonists for glioblastoma therapy. Adv Protein Chem Struct Biol. 2024;142:1-24. doi: 10.1016/bs.apcsb.2024.06.001. Epub 2024 Jul 6. PMID: 39059983.
  96. Syed A. Sarwar, Anirudh Maddali, David Adams, Rohit Prem Kumar, O'Malley GR, Szymanski LJ, Goldstein I, Patel NV, et al. Glioblastoma multiforme incidence is increasing: An epidemiological investigation of 100,000 cases across the United States. 2024. doi: 10.21203/rs.3.rs-5423792/v1.
  97. Ruggeri RM, Altieri B, Razzore P, Retta F, Sperti E, Scotto G, Brizzi MP, Zumstein L, Pia A, Lania A, Lavezzi E, Nappo G, Laffi A, Albertelli M, Boschetti M, Hasballa I, Veresani A, Prinzi N, Pusceddu S, Oldani S, Nichetti F, Modica R, Minotta R, Liccardi A, Cannavale G, Grossrubatscher EM, Tarsitano MG, Zamponi V, Zatelli MC, Zanata I, Mazzilli R, Appetecchia M, Davì MV, Guarnotta V, Giannetta E, La Salvia A, Fanciulli G, Malandrino P, Isidori AM, Colao A, Faggiano A; NIKE Group. Gender-related differences in patients with carcinoid syndrome: new insights from an Italian multicenter cohort study. J Endocrinol Invest. 2024 Apr;47(4):959-971. doi: 10.1007/s40618-023-02213-1. Epub 2023 Oct 14. PMID: 37837555; PMCID: PMC10965670.
  98. Penninger JM, Grant MB, Sung JJY. The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology. 2021 Jan;160(1):39-46. doi: 10.1053/j.gastro.2020.07.067. Epub 2020 Oct 30. PMID: 33130103; PMCID: PMC7836226.
  99. Reddy BS, Weisburger JH, Wynder EL. Fecal bacterial beta-glucuronidase: control by diet. Science. 1974 Feb 1;183(4123):416-7. doi: 10.1126/science.183.4123.416. PMID: 4808971.
  100. Walsh CJ, Guinane CM, O'Toole PW, Cotter PD. Beneficial modulation of the gut microbiota. FEBS Lett. 2014 Nov 17;588(22):4120-30. doi: 10.1016/j.febslet.2014.03.035. Epub 2014 Mar 26. PMID: 24681100.
  101. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G, Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014 Apr 15;5:3654. doi: 10.1038/ncomms4654. PMID: 24736369; PMCID: PMC3996546.
  102. Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, Robinson JL, Elias JE, Sonnenburg ED, Gardner CD, Sonnenburg JL. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021 Aug 5;184(16):4137-4153.e14. doi: 10.1016/j.cell.2021.06.019. Epub 2021 Jul 12. PMID: 34256014; PMCID: PMC9020749.
  103. Thu MS, Ondee T, Nopsopon T, Farzana IAK, Fothergill JL, Hirankarn N, Campbell BJ, Pongpirul K. Effect of Probiotics in Breast Cancer: A Systematic Review and Meta-Analysis. Biology (Basel). 2023 Feb 9;12(2):280. doi: 10.3390/biology12020280. PMID: 36829557; PMCID: PMC10004677.
  104. Salari S, Ghasemi Nejad Almani P. Antifungal effects of Lactobacillus acidophilus and Lactobacillus plantarum against different oral Candida species isolated from HIV/ AIDS patients: an in vitro study. J Oral Microbiol. 2020 May 25;12(1):1769386. doi: 10.1080/20002297.2020.1769386. PMID: 32922676; PMCID: PMC7448839.
  105. Zangl I, Pap IJ, Aspöck C, Schüller C. The role of Lactobacillus species in the control of Candida via biotrophic interactions. Microb Cell. 2019 Nov 25;7(1):1-14. doi: 10.15698/mic2020.01.702. PMID: 31921929; PMCID: PMC6946018.
  106. Amiri P, Hosseini SA, Ghaffari S, Tutunchi H, Ghaffari S, Mosharkesh E, Asghari S, Roshanravan N. Role of Butyrate, a Gut Microbiota Derived Metabolite, in Cardiovascular Diseases: A comprehensive narrative review. Front Pharmacol. 2022 Feb 2;12:837509. doi: 10.3389/fphar.2021.837509. PMID: 35185553; PMCID: PMC8847574.
  107. Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother. 2024 Sep;178:117177. doi: 10.1016/j.biopha.2024.117177. Epub 2024 Jul 24. PMID: 39053423.
  108. Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol. 2020 Jul;15:1075-1090. doi: 10.2217/fmb-2019-0343. Epub 2020 Aug 28. PMID: 32854542.
  109. Alseksek RK, Ramadan WS, Saleh E, El-Awady R. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. Int J Mol Sci. 2022 Jul 24;23(15):8141. doi: 10.3390/ijms23158141. PMID: 35897717; PMCID: PMC9331760.
  110. Chakraborty P, Laird AS. Understanding activity of butyrate at a cellular level. Neural Regen Res. 2025 Aug 1;20(8):2323-2324. doi: 10.4103/NRR.NRR-D-24-00468. Epub 2024 Sep 6. PMID: 39359090; PMCID: PMC11759013.
  111. Gommers LMM, Ederveen THA, van der Wijst J, Overmars-Bos C, Kortman GAM, Boekhorst J, Bindels RJM, de Baaij JHF, Hoenderop JGJ. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia. FASEB J. 2019 Oct;33(10):11235-11246. doi: 10.1096/fj.201900839R. Epub 2019 Jul 12. PMID: 31299175.
  112. Fatima G, Dzupina A, B Alhmadi H, Magomedova A, Siddiqui Z, Mehdi A, Hadi N. Magnesium Matters: A Comprehensive Review of Its Vital Role in Health and Diseases. Cureus. 2024 Oct 13;16(10):e71392. doi: 10.7759/cureus.71392. PMID: 39539878; PMCID: PMC11557730.
  113. Ashique S, Kumar S, Hussain A, Mishra N, Garg A, Gowda BHJ, Farid A, Gupta G, Dua K, Taghizadeh-Hesary F. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J Health Popul Nutr. 2023 Jul 27;42(1):74. doi: 10.1186/s41043-023-00423-0. Erratum in: J Health Popul Nutr. 2023 Nov 2;42(1):117. doi: 10.1186/s41043-023-00461-8. PMID: 37501216; PMCID: PMC10375690.
  114. Veronese N, Pizzol D, Smith L, Dominguez LJ, Barbagallo M. Effect of Magnesium Supplementation on Inflammatory Parameters: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2022 Feb 5;14(3):679. doi: 10.3390/nu14030679. PMID: 35277037; PMCID: PMC8838086.
  115. Meir Z, Osherov N. Vitamin Biosynthesis as an Antifungal Target. J Fungi (Basel). 2018 Jun 17;4(2):72. doi: 10.3390/jof4020072. PMID: 29914189; PMCID: PMC6023522.
  116. Zhang T, Wang W, Li J, Ye X, Wang Z, Cui S, Shen S, Liang X, Chen YQ, Zhu S. Free fatty acid receptor 4 modulates dietary sugar preference via the gut microbiota. Nat Microbiol. 2025 Feb;10(2):348-361. doi: 10.1038/s41564-024-01902-8. Epub 2025 Jan 13. PMID: 39805952.
  117. Trachsel J, Bayles DO, Looft T, Levine UY, Allen HK. Function and Phylogeny of Bacterial Butyryl Coenzyme A:Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Appl Environ Microbiol. 2016 Oct 27;82(22):6788-6798. doi: 10.1128/AEM.02307-16. PMID: 27613689; PMCID: PMC5086572.
  118. Kherad Z, Yazdanpanah S, Saadat F, Pakshir K, Zomorodian K. Vitamin D3: A promising antifungal and antibiofilm agent against Candida species. Curr Med Mycol. 2023 Jun;9(2):17-22. doi: 10.18502/cmm.2023.345062.1416. PMID: 38375518; PMCID: PMC10874479.
  119. Chaudhry KK, Shukla PK, Mir H, Manda B, Gangwar R, Yadav N, McMullen M, Nagy LE, Rao R. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. J Nutr Biochem. 2016 Jan;27:16-26. doi: 10.1016/j.jnutbio.2015.08.012. Epub 2015 Aug 20. PMID: 26365579; PMCID: PMC4691434.
  120. Sohail MU, Yassine HM, Sohail A, Thani AAA. Impact of Physical Exercise on Gut Microbiome, Inflammation, and the Pathobiology of Metabolic Disorders. Rev Diabet Stud. 2019;15:35-48. doi: 10.1900/RDS.2019.15.35. Epub 2019 Aug 4. PMID: 31380886; PMCID: PMC6760895.
  121. Louis P, Duncan SH, Sheridan PO, Walker AW, Flint HJ. Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome (Camb). 2022 May 4;3:e3. doi: 10.1017/gmb.2022.3. PMID: 39295779; PMCID: PMC11406415.
  122. Aurora R, Sanford T. The Microbiome: From the Beginning to the End. Mo Med. 2024 Jul-Aug;121(4):310-316. PMID: 39575080; PMCID: PMC11578570.
  123. Petersen MR, Cosgrove SE, Quinn TC, Patel EU, Kate Grabowski M, Tobian AAR. Prescription Antibiotic Use Among the US population 1999-2018: National Health and Nutrition Examination Surveys. Open Forum Infect Dis. 2021 May 13;8(7):ofab224. doi: 10.1093/ofid/ofab224. PMID: 34295941; PMCID: PMC8291435.
  124. Aghaali M, Hashemi-Nazari SS. Association between early antibiotic exposure and risk of childhood weight gain and obesity: a systematic review and meta-analysis. J Pediatr Endocrinol Metab. 2019 May 27;32(5):439-445. doi: 10.1515/jpem-2018-0437. PMID: 31042643.
  125. Li P, Chang X, Chen X, Wang C, Shang Y, Zheng D, Qi K. Early-life antibiotic exposure increases the risk of childhood overweight and obesity in relation to dysbiosis of gut microbiota: a birth cohort study. Ann Clin Microbiol Antimicrob. 2022 Nov 3;21(1):46. doi: 10.1186/s12941-022-00535-1. PMID: 36329476; PMCID: PMC9635112.
  126. Kesavelu D, Jog P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis. 2023 Feb 24;10:20499361231154443. doi: 10.1177/20499361231154443. PMID: 36860273; PMCID: PMC9969474.
  127. Jawad AB, Jansson S, Wewer V, Malham M. Early Life Oral Antibiotics Are Associated With Pediatric-Onset Inflammatory Bowel Disease-A Nationwide Study. J Pediatr Gastroenterol Nutr. 2023 Sep 1;77(3):366-372. doi: 10.1097/MPG.0000000000003861. Epub 2023 Jun 22. PMID: 37346028.
  128. Pérez JC. The interplay between gut bacteria and the yeast Candida albicans. Gut Microbes. 2021 Jan-Dec;13(1):1979877. doi: 10.1080/19490976.2021.1979877. PMID: 34586038; PMCID: PMC8489915.
  129. Cordeiro RA, Evangelista AJJ, Serpa R, de Andrade ARC, Mendes PBL, de Oliveira JS, de Alencar LP, Pereira VS, Lima-Neto RG, Brilhante RN, Sidrim JJC, Maia DCBSC, Rocha MFG. Cefepime and Amoxicillin Increase Metabolism and Enhance Caspofungin Tolerance of Candida albicans Biofilms. Front Microbiol. 2019 Jun 28;10:1337. doi: 10.3389/fmicb.2019.01337. PMID: 31316472; PMCID: PMC6609871.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search