Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Nature and Nurture in Archaeal Synthetases and their Effects on trna Aminoacylation

Biology Group    Start Submission

Alan M Laibelman*

Volume6-Issue8
Dates: Received: 2025-07-29 | Accepted: 2025-08-29 | Published: 2025-08-30
Pages: 1168-1201

Abstract

Genes affect lifestyle preferences affect genes affect lifestyle preferences; the cycle never stops. For no lifeform is this more dramatically demonstrated than Archaea, the majority of whom are extreme in their preference for heat or cold, acidity or alkalinity, degree of salinity, presence or absence of oxygen. This comparative genomic study investigated encoded aminoacyl-tRNA synthetase primary sequences for 150 species. In conjunction with a previous inquiry about tRNA sequences, implications arise for mechanisms of aminoacylation for each tRNA type by its cognate amino acid with synthetase as catalyst. One strong conclusion emerges: there is a severe shortage of kinetic data available for these organisms. Regardless of theoretical developments for bacterial systems, on which much effort has been expended over time, they cannot be reliably extrapolated into Archaea to produce a comprehensive understanding of the process of translation in unicellular creatures.

FullText HTML FullText PDF DOI: 10.37871/jbres2175


Certificate of Publication




Copyright

© 2025 Laibelman AM. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Laibelman AM. Nature and Nurture in Archaeal Synthetases and their Effects on trna Aminoacylation. J Biomed Res Environ Sci. 2025 Aug 30; 6(8): 1168-1201. doi: 10.37871/jbres2175, Article ID: JBRES2175, Available at: https://www.jelsciences. com/articles/jbres2175.pdf


Subject area(s)

References


  1. Rogers LJ. Knowledge of lateralized brain function can contribute to animal welfare. Front Vet Sci. 2023 Aug 4;10:1242906. doi: 10.3389/fvets.2023.1242906. PMID: 37601762; PMCID: PMC10436595.
  2. Guerra S, Castiello U, Bonato B, Dadda M. Handedness in Animals and Plants. Biology (Basel). 2024 Jul 5;13(7):502. doi: 10.3390/biology13070502. PMID: 39015821; PMCID: PMC7616222.
  3. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576-9. doi: 10.1073/pnas.87.12.4576. PMID: 2112744; PMCID: PMC54159.
  4. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088-90. doi: 10.1073/pnas.74.11.5088. PMID: 270744; PMCID: PMC432104.
  5. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol. 2008 Mar;6(3):245-52. doi: 10.1038/nrmicro1852. PMID: 18274537.
  6. Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe TM, Maupin-Furlow J, Pohlschroder M, Daniels C, Pfeiffer F, Allers T, Eisen JA. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One. 2010 Mar 19;5(3):e9605. doi: 10.1371/journal.pone.0009605. PMID: 20333302; PMCID: PMC2841640.
  7. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D'Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364-70. doi: 10.1038/37052. Erratum in: Nature 1998 Jul 2;394(6688):101. PMID: 9389475.
  8. Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG. Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768-20. J Bacteriol. 2011 Jun;193(12):3156-7. doi: 10.1128/JB.00409-11. Epub 2011 Apr 8. PMID: 21478349; PMCID: PMC3133184.
  9. Jebbar M, Franzetti B, Girard E, Oger P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles. 2015 Jul;19(4):721-40. doi: 10.1007/s00792-015-0760-3. Epub 2015 Jun 23. PMID: 26101015.
  10. Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ, Jochimsen D, Oswald BP, Robertson J, Sarver BA, Schenk JJ, Spear SF, Harmon LJ. Ecological opportunity and the origin of adaptive radiations. J Evol Biol. 2010 Aug;23(8):1581-96. doi: 10.1111/j.1420-9101.2010.02029.x. Epub 2010 Jun 17. PMID: 20561138.
  11. Gong P, Lei P, Wang S, Zeng A, Lou H. Post-Translational Modifications Aid Archaeal Survival. Biomolecules. 2020 Apr 10;10(4):584. doi: 10.3390/biom10040584. PMID: 32290118; PMCID: PMC7226565.
  12. Laibelman AM. The Standard genetic code lacks redundancy for amino acid codons. BioRxiv.org. 2022:519817. doi: 10.1101/2022.12.27.519817.
  13. Karsch-Mizrachi I, Takagi T, Cochrane G; International Nucleotide Sequence Database Collaboration. The international nucleotide sequence database collaboration. Nucleic Acids Res. 2018 Jan 4;46(D1):D48-D51. doi: 10.1093/nar/gkx1097. PMID: 29190397; PMCID: PMC5753279.
  14. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W695-9. doi: 10.1093/nar/gkq313. Epub 2010 May 3. PMID: 20439314; PMCID: PMC2896090.
  15. Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, Lopez R, Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024 Jul 5;52(W1):W521-W525. doi: 10.1093/nar/gkae241. PMID: 38597606; PMCID: PMC11223882.
  16. Paris Z, Fleming IM, Alfonzo JD. Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Semin Cell Dev Biol. 2012 May;23(3):269-74. doi: 10.1016/j.semcdb.2011.10.009. Epub 2011 Oct 19. PMID: 22024020; PMCID: PMC3345058.
  17. Wolff P, Villette C, Zumsteg J, Heintz D, Antoine L, Chane-Woon-Ming B, Droogmans L, Grosjean H, Westhof E. Comparative patterns of modified nucleotides in individual tRNA species from a mesophilic and two thermophilic archaea. RNA. 2020 Dec;26(12):1957-1975. doi: 10.1261/rna.077537.120. Epub 2020 Sep 29. PMID: 32994183; PMCID: PMC7668247.
  18. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol. 2004 Jun;186(12):3980-90. doi: 10.1128/JB.186.12.3980-3990.2004. PMID: 15175312; PMCID: PMC419955.
  19. Kim HS, Vothknecht UC, Hedderich R, Celic I, Söll D. Sequence divergence of seryl-tRNA synthetases in archaea. J Bacteriol. 1998 Dec;180(24):6446-9. doi: 10.1128/JB.180.24.6446-6449.1998. PMID: 9851985; PMCID: PMC107743.
  20. Bastian FB, Chibucos MC, Gaudet P, Giglio M, Holliday GL, Huang H, Lewis SE, Niknejad A, Orchard S, Poux S, Skunca N, Robinson-Rechavi M. The Confidence Information Ontology: a step towards a standard for asserting confidence in annotations. Database (Oxford). 2015 May 9;2015:bav043. doi: 10.1093/database/bav043. PMID: 25957950; PMCID: PMC4425939.
  21. Goudey B, Geard N, Verspoor K, Zobel J. Propagation, detection and correction of errors using the sequence database network. Brief Bioinform. 2022 Nov 19;23(6):bbac416. doi: 10.1093/bib/bbac416. PMID: 36266246; PMCID: PMC9677457.
  22. Karp PD, Paley S, Zhu J. Database verification studies of SWISS-PROT and GenBank. Bioinformatics. 2001 Jun;17(6):526-32; discussion 533-4. doi: 10.1093/bioinformatics/17.6.526. PMID: 11395429.
  23. Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD, Stathopoulos C, Amoutzias GD. The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic Acids Res. 2017 Feb 17;45(3):1059-1068. doi: 10.1093/nar/gkw1182. PMID: 28180287; PMCID: PMC5388404.
  24. Beebe K, Merriman E, Ribas De Pouplana L, Schimmel P. A domain for editing by an archaebacterial tRNA synthetase. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5958-63. doi: 10.1073/pnas.0401530101. Epub 2004 Apr 12. PMID: 15079065; PMCID: PMC395905.
  25. Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T, Fukai S, Konno M, Hendrickson TL, Schimmel P, Yokoyama S. Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science. 1998 Apr 24;280(5363):578-82. doi: 10.1126/science.280.5363.578. PMID: 9554847.
  26. Fukunaga R, Yokoyama S. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J Mol Biol. 2006 Jun 16;359(4):901-12. doi: 10.1016/j.jmb.2006.04.025. Epub 2006 Apr 25. PMID: 16697013.
  27. Sheppard K, Söll D. On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. J Mol Biol. 2008 Mar 28;377(3):831-44. doi: 10.1016/j.jmb.2008.01.016. Epub 2008 Jan 16. PMID: 18279892; PMCID: PMC2366055.
  28. Schleper C, Pühler G, Klenk H-P, Zillig W. Picrophilus oshimae and Picrophilus torridus. Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archaea. Int J System Evol Microbiol, 1996;46(3):814−816. doi: 10.1099/00207713-46-3-814.
  29. Andam CP, Harlow TJ, Papke RT, Gogarten JP. Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales. BMC Evol Biol. 2012 Jun 13;12:85. doi: 10.1186/1471-2148-12-85. PMID: 22694720; PMCID: PMC3436685.
  30. Woese CR, Olsen GJ, Ibba M, Söll D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36. doi: 10.1128/MMBR.64.1.202-236.2000. PMID: 10704480; PMCID: PMC98992.
  31. O'Donoghue P, Luthey-Schulten Z. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev. 2003 Dec;67(4):550-73. doi: 10.1128/MMBR.67.4.550-573.2003. PMID: 14665676; PMCID: PMC309052.
  32. Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woese CR, Söll D. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science. 1997 Nov 7;278(5340):1119-22. doi: 10.1126/science.278.5340.1119. PMID: 9353192.
  33. Levengood J, Ataide SF, Roy H, Ibba M. Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases. J Biol Chem. 2004 Apr 23;279(17):17707-14. doi: 10.1074/jbc.M313665200. Epub 2004 Jan 27. PMID: 14747465.
  34. Ibba M, Bono JL, Rosa PA, Söll D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14383-8. doi: 10.1073/pnas.94.26.14383. PMID: 9405621; PMCID: PMC24988.
  35. Mahapatra A, Srinivasan G, Richter KB, Meyer A, Lienard T, Zhang JK, Zhao G, Kang PT, Chan M, Gottschalk G, Metcalf WW, Krzycki JA. Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp. Mol Microbiol. 2007 Jun;64(5):1306-18. doi: 10.1111/j.1365-2958.2007.05740.x. PMID: 17542922.
  36. Ambrogelly A, Korencic D, Ibba M. Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer. J Bacteriol. 2002 Aug;184(16):4594-600. doi: 10.1128/JB.184.16.4594-4600.2002. PMID: 12142429; PMCID: PMC135231.
  37. Eriani G, Delarue M, Poch O, Gangloff J, Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203-6. doi: 10.1038/347203a0. PMID: 2203971.
  38. Rubio Gomez MA, Ibba M. Aminoacyl-tRNA synthetases. RNA. 2020 Aug;26(8):910-936. doi: 10.1261/rna.071720.119. Epub 2020 Apr 17. PMID: 32303649; PMCID: PMC7373986.
  39. First EA, Fersht AR. Analysis of the role of the KMSKS loop in the catalytic mechanism of the tyrosyl-tRNA synthetase using multimutant cycles. Biochemistry. 1995 Apr 18;34(15):5030-43. doi: 10.1021/bi00015a014. PMID: 7711024.
  40. Carter CW Jr. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem. 1993;62:715-48. doi: 10.1146/annurev.bi.62.070193.003435. PMID: 8352600.
  41. Kaiser F, Bittrich S, Salentin S, Leberecht C, Haupt VJ, Krautwurst S, Schroeder M, Labudde D. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases. PLoS Comput Biol. 2018 Apr 16;14(4):e1006101. doi: 10.1371/journal.pcbi.1006101. PMID: 29659563; PMCID: PMC5919687.
  42. Francklyn CS, First EA, Perona JJ, Hou YM. Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods. 2008 Feb;44(2):100-18. doi: 10.1016/j.ymeth.2007.09.007. PMID: 18241792; PMCID: PMC2288706.
  43. Laibelman AM. Lessons from Eukaryl tRNA: Fungi are not Mammals. Preprints.org, 2024, 202407.1791.v1. doi:10.20944/preprints202506.0050.v1.
  44. Fang ZP, Wang M, Ruan ZR, Tan M, Liu RJ, Zhou M, Zhou XL, Wang ED. Coexistence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNA(Leu) in the archaeal mode. Nucleic Acids Res. 2014 Apr;42(8):5109-24. doi: 10.1093/nar/gku108. Epub 2014 Feb 5. PMID: 24500203; PMCID: PMC4005665.
  45. Weitzel CS, Li L, Zhang C, Eilts KK, Bretz NM, Gatten AL, Whitaker RJ, Martinis SA. Duplication of leucyl-tRNA synthetase in an archaeal extremophile may play a role in adaptation to variable environmental conditions. J Biol Chem. 2020 Apr 3;295(14):4563-4576. doi: 10.1074/jbc.RA118.006481. Epub 2020 Feb 26. PMID: 32102848; PMCID: PMC7135992.
  46. Korencic D, Ahel I, Schelert J, Sacher M, Ruan B, Stathopoulos C, Blum P, Ibba M, Söll D. A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10260-5. doi: 10.1073/pnas.0403926101. Epub 2004 Jul 6. PMID: 15240874; PMCID: PMC478561.
  47. Wan W, Tharp JM, Liu WR. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta. 2014 Jun;1844(6):1059-70. doi: 10.1016/j.bbapap.2014.03.002. Epub 2014 Mar 12. PMID: 24631543; PMCID: PMC4016821.
  48. Shimizu S, Juan EC, Sato Y, Miyashita Y, Hoque MM, Suzuki K, Sagara T, Tsunoda M, Sekiguchi T, Dock-Bregeon AC, Moras D, Takénaka A. Two complementary enzymes for threonylation of tRNA in crenarchaeota: crystal structure of Aeropyrum pernix threonyl-tRNA synthetase lacking a cis-editing domain. J Mol Biol. 2009 Nov 27;394(2):286-96. doi: 10.1016/j.jmb.2009.09.018. Epub 2009 Sep 15. PMID: 19761773.
  49. Nakamura A, Yao M, Chimnaronk S, Sakai N, Tanaka I. Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science. 2006 Jun 30;312(5782):1954-8. doi: 10.1126/science.1127156. PMID: 16809541.
  50. Curnow AW, Hong Kw, Yuan R, Kim Si, Martins O, Winkler W, Henkin TM, Söll D. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11819-26. doi: 10.1073/pnas.94.22.11819. PMID: 9342321; PMCID: PMC23611.
  51. Schmitt E, Panvert M, Blanquet S, Mechulam Y. Structural basis for tRNA-dependent amidotransferase function. Structure. 2005 Oct;13(10):1421-33. doi: 10.1016/j.str.2005.06.016. PMID: 16216574.
  52. Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci. 2012 Aug;69(16):2657-70. doi: 10.1007/s00018-012-0944-2. Epub 2012 Mar 17. PMID: 22426497; PMCID: PMC3400036.
  53. Fujishima K, Kanai A. tRNA gene diversity in the three domains of life. Front Genet. 2014 May 26;5:142. doi: 10.3389/fgene.2014.00142. PMID: 24904642; PMCID: PMC4033280.
  54. Brochier C, Forterre P, Gribaldo S. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol. 2005 Jun 2;5:36. doi: 10.1186/1471-2148-5-36. PMID: 15932645; PMCID: PMC1177939.
  55. Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem. 2023 Aug;299(8):104966. doi: 10.1016/j.jbc.2023.104966. Epub 2023 Jun 26. PMID: 37380076; PMCID: PMC10424219.
  56. Tamaki S, Tomita M, Suzuki H, Kanai A. Systematic Analysis of the Binding Surfaces between tRNAs and Their Respective Aminoacyl tRNA Synthetase Based on Structural and Evolutionary Data. Front Genet. 2018 Jan 8;8:227. doi: 10.3389/fgene.2017.00227. PMID: 29358943; PMCID: PMC5766645.
  57. Liepinsh E, Otting G. Proton exchange rates from amino acid side chains--implications for image contrast. Magn Reson Med. 1996 Jan;35(1):30-42. doi: 10.1002/mrm.1910350106. PMID: 8771020.
  58. Pines E, Magnes B-Z, Lang MJ, Fleming GR. Direct measurement of intrinsic proton transfer rates in diffusion-controlled reactions. Chem Phys Lett. 1997;281:413-20. doi: 10.1016/s0009-2614(97)01245-1.
  59. de Grotthuss CJT. Sur la décomposition de L’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim. 1806;58:54-73.
  60. Hassanali A, Giberti F, Cuny J, Kühne TD, Parrinello M. Proton transfer through the water gossamer. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13723-8. doi: 10.1073/pnas.1306642110. Epub 2013 Jul 18. PMID: 23868853; PMCID: PMC3752248.
  61. Roh JH, Briber RM, Damjanovic A, Thirumalai D, Woodson SA, Sokolov AP. Dynamics of tRNA at different levels of hydration. Biophys J. 2009 Apr 8;96(7):2755-62. doi: 10.1016/j.bpj.2008.12.3895. PMID: 19348758; PMCID: PMC2711275.
  62. Biro JC. The concept of RNA-assisted protein folding: the role of tRNA. Theor Biol Med Model. 2012 Apr 2;9:10. doi: 10.1186/1742-4682-9-10. PMID: 22462735; PMCID: PMC3359187.
  63. OFENGAND EJ, DIECKMANN M, BERG P. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. III. Isolation of amino acid-acceptor ribonucleic acids from Escherichia coli. J Biol Chem. 1961 Jun;236:1741-7. PMID: 13730373.
  64. Blanquet S, Fayat G, Poiret M, Waller JP. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Inhibition by adenosine and 8-aminoadenosine of the amino-acid activation reaction. Eur J Biochem. 1975 Feb 21;51(2):567-71. doi: 10.1111/j.1432-1033.1975.tb03957.x. PMID: 168070.
  65. MH, Pan T. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures. Nucleic Acids Res. 2016 Jan 8;44(1):294-303. doi: 10.1093/nar/gkv1379. Epub 2015 Dec 10. PMID: 26657639; PMCID: PMC4705672.
  66. Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW Jr. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation. J Biol Chem. 2010 Dec 3;285(49):38590-601. doi: 10.1074/jbc.M110.136911. Epub 2010 Sep 23. PMID: 20864539; PMCID: PMC2992291.
  67. Dutta S, Chandra A. Free Energy Landscape of the Adenylation Reaction of the Aminoacylation Process at the Active Site of Aspartyl tRNA Synthetase. J Phys Chem B. 2022 Aug 11;126(31):5821-5831. doi: 10.1021/acs.jpcb.2c03843. Epub 2022 Jul 27. PMID: 35895864.
  68. Zhang CM, Perona JJ, Ryu K, Francklyn C, Hou YM. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases. J Mol Biol. 2006 Aug 11;361(2):300-11. doi: 10.1016/j.jmb.2006.06.015. Epub 2006 Jun 27. PMID: 16843487.
  69. Dong X, Zhou M, Zhong C, Yang B, Shen N, Ding J. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase. Nucleic Acids Res. 2010 Mar;38(4):1401-12. doi: 10.1093/nar/gkp1053. Epub 2009 Nov 26. PMID: 19942682; PMCID: PMC2831299.
  70. Marek CJ. Calculation of kinetic rate constants from thermodynamic data. 1995.
  71. Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins. 2008 Nov 15;73(3):765-83. doi: 10.1002/prot.22102. PMID: 18498103.
  72. Loftfield RB, Eigner EA. Mechanism of action of amino acid transfer ribonucleic acid ligases. J Biol Chem. 1969 Apr 10;244(7):1746-54. PMID: 4305463.
  73. Dutta S, Chandra A. A Multiple Proton Transfer Mechanism for the Charging Step of the Aminoacylation Reaction at the Active Site of Aspartyl tRNA Synthetase. J Chem Inf Model. 2023 Mar 27;63(6):1819-1832. doi: 10.1021/acs.jcim.2c01332. Epub 2023 Mar 9. PMID: 36893463.
  74. Fersht AR, Jakes R. Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique. Biochemistry. 1975 Jul 29;14(15):3350-6. doi: 10.1021/bi00686a010. PMID: 1096942.
  75. Bovee ML, Pierce MA, Francklyn CS. Induced fit and kinetic mechanism of adenylation catalyzed by Escherichia coli threonyl-tRNA synthetase. Biochemistry. 2003 Dec 30;42(51):15102-13. doi: 10.1021/bi0355701. PMID: 14690420.
  76. Perona JJ, Rould MA, Steitz TA. Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry. 1993 Aug 31;32(34):8758-71. doi: 10.1021/bi00085a006. PMID: 8364025.
  77. Cvetesic N, Gruic-Sovulj I. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Methods. 2017 Jan 15;113:13-26. doi: 10.1016/j.ymeth.2016.09.015. Epub 2016 Oct 3. PMID: 27713080.
  78. Black Pyrkosz A, Eargle J, Sethi A, Luthey-Schulten Z. Exit strategies for charged tRNA from GluRS. J Mol Biol. 2010 Apr 16;397(5):1350-71. doi: 10.1016/j.jmb.2010.02.003. Epub 2010 Feb 13. PMID: 20156451; PMCID: PMC3232055.
  79. Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. Chem Biol. 2009 Mar 27;16(3):323-36. doi: 10.1016/j.chembiol.2009.03.001. PMID: 19318213; PMCID: PMC2696486.
  80. Strecker A. Ueber einen neuen aus Aldehyd-Ammoniak-Blausäure entstehenden Korper. Annalen der Chemie und Pharmacie. 1854;91:349-51.
  81. Masamba W. Petasis vs. Strecker Amino acid synthesis: convergence, divergence and opportunities in organic synthesis. Molec, 2021,26:1707. doi:10.3390/molecules26061707.
  82. Cai X-H & Xie B. recent advances on asymmetric strecker reactions. Arkivoc, 2014, 1: 205−48. doi:10.3998/ark.5550190.p008.487.
  83. Gelbin A, Schneider B, Clowney L, Hsieh S-H, Olson WK, Berman HM. Geometric parameters in nucleic acids: sugar and phosphate constituents. J Amer Chem Soc. 1996;118:519-29.
  84. Zhou XL, Du DH, Tan M, Lei HY, Ruan LL, Eriani G, Wang ED. Role of tRNA amino acid-accepting end in aminoacylation and its quality control. Nucleic Acids Res. 2011 Nov 1;39(20):8857-68. doi: 10.1093/nar/gkr595. Epub 2011 Jul 20. PMID: 21775341; PMCID: PMC3203616.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search