Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Why we avoid Animal Products: Science and Success Behind Bethsaida Hospitals Whole-Food Plant-Based Cardiac Program

Medicine Group    Start Submission

Dasaad Mulijono*

Volume6-Issue8
Dates: Received: 2025-06-26 | Accepted: 2025-08-10 | Published: 2025-08-11
Pages: 1016-1025

Abstract

Cardiovascular disease remains the leading cause of morbidity and mortality globally, with atherosclerosis and restenosis as critical pathological contributors. Accumulating evidence suggests that diets high in animal products—including red meat, eggs, and dairy—are significant contributors to these conditions through mechanisms such as oxidative stress, inflammation, Nitric Oxide (NO) depletion, insulin resistance, mitochondrial dysfunction, and disruption of the gut microbiota. This review presents a comprehensive synthesis of the molecular and physiological pathways by which animal-based diets contribute to vascular disease, while highlighting the protective and therapeutic potential of Whole Food Plant-Based Diets (WFPBDs). Central to this discussion is the pioneering implementation of WFPBD at Bethsaida Hospital in Tangerang, Indonesia—the first in the country to integrate WFPBD into standard cardiac care under the leadership of Prof. Dasaad Mulijono (DM). Clinical outcomes from Bethsaida demonstrate remarkable reversal or stabilization of hypertension, Type 2 Diabetes (T2D), dyslipidaemia, Chronic Kidney Disease (CKD), and Coronary Artery Disease (CAD), including a strikingly low restenosis rate of 2% in patients undergoing Drug-Coated Balloon (DCB) therapy.

Bethsaida’s experience provides a compelling, real-world testament to the transformative power of nutritional intervention in cardiovascular medicine, underscoring the urgency of repositioning nutrition as a central therapeutic strategy.

FullText HTML FullText PDF DOI: 10.37871/jbres2157


Certificate of Publication




Copyright

© 2025 Mulijono D, Distributed under Creative Commons CC-BY 4.0

How to cite this article

Mulijono D. Why we avoid Animal Products: Science and Success Behind Bethsaida Hospitals Whole- Food Plant-Based Cardiac Program. J Biomed Res Environ Sci. 2025 Aug 11; 6(8): 1016-1025. doi: 10.37871/jbres2157, Article ID: JBRES2157, Available at: https://www.jelsciences.com/articles/jbres2157.pdf


Subject area(s)

References


  1. Di Cesare M, Perel P, Taylor S, Kabudula C, Bixby H, Gaziano TA, McGhie DV, Mwangi J, Pervan B, Narula J, Pineiro D, Pinto FJ. The Heart of the World. Glob Heart. 2024 Jan 25;19(1):11. doi: 10.5334/gh.1288. PMID: 38273998; PMCID: PMC10809869.
  2. Shahjehan RD, Sharma S, Bhutta BS. Coronary artery disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025.
  3. Tuso P, Stoll SR, Li WW. A plant-based diet, atherogenesis, and coronary artery disease prevention. Perm J. 2015 Winter;19(1):62-7. doi: 10.7812/TPP/14-036. Epub 2014 Nov 24. PMID: 25431999; PMCID: PMC4315380.
  4. Mehta P, Tawfeeq S, Padte S, Sunasra R, Desai H, Surani S, Kashyap R. Plant-based diet and its effect on coronary artery disease: A narrative review. World J Clin Cases. 2023 Jul 16;11(20):4752-4762. doi: 10.12998/wjcc.v11.i20.4752. PMID: 37583985; PMCID: PMC10424050.
  5. Salehin S, Rasmussen P, Mai S, Mushtaq M, Agarwal M, Hasan SM, Salehin S, Raja M, Gilani S, Khalife WI. Plant Based Diet and Its Effect on Cardiovascular Disease. Int J Environ Res Public Health. 2023 Feb 14;20(4):3337. doi: 10.3390/ijerph20043337. PMID: 36834032; PMCID: PMC9963093.
  6. Lee SY. Vegetarian Diets and Cardiovascular Risk Reduction: Pros. J Lipid Atheroscler. 2023 Sep;12(3):315-322. doi: 10.12997/jla.2023.12.3.315. Epub 2023 Sep 13. PMID: 37800106; PMCID: PMC10548187.
  7. Koutentakis M, Surma S, Rogula S, Filipiak KJ, Gąsecka A. The Effect of a Vegan Diet on the Cardiovascular System. J Cardiovasc Dev Dis. 2023 Feb 22;10(3):94. doi: 10.3390/jcdd10030094. PMID: 36975858; PMCID: PMC10052889.
  8. Peña-Jorquera H, Cid-Jofré V, Landaeta-Díaz L, Petermann-Rocha F, Martorell M, Zbinden-Foncea H, Ferrari G, Jorquera-Aguilera C, Cristi-Montero C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome-A Comprehensive Review. Nutrients. 2023 Jul 21;15(14):3244. doi: 10.3390/nu15143244. PMID: 37513660; PMCID: PMC10386413.
  9. Landry MJ, Ward CP, Cunanan KM, Durand LR, Perelman D, Robinson JL, Hennings T, Koh L, Dant C, Zeitlin A, Ebel ER, Sonnenburg ED, Sonnenburg JL, Gardner CD. Cardiometabolic Effects of Omnivorous vs Vegan Diets in Identical Twins: A Randomized Clinical Trial. JAMA Netw Open. 2023 Nov 1;6(11):e2344457. doi: 10.1001/jamanetworkopen.2023.44457. Erratum in: JAMA Netw Open. 2023 Dec 1;6(12):e2350422. doi: 10.1001/jamanetworkopen.2023.50422. PMID: 38032644; PMCID: PMC10690456.
  10. Wang T, Masedunskas A, Willett WC, Fontana L. Vegetarian and vegan diets: benefits and drawbacks. Eur Heart J. 2023 Sep 21;44(36):3423-3439. doi: 10.1093/eurheartj/ehad436. PMID: 37450568; PMCID: PMC10516628.
  11. Campbell TC. A plant-based diet and animal protein: questioning dietary fat and considering animal protein as the main cause of heart disease. J Geriatr Cardiol. 2017 May;14(5):331-337. doi: 10.11909/j.issn.1671-5411.2017.05.011. PMID: 28630612; PMCID: PMC5466939.
  12. Feingold KR,. The Effect of Diet on Cardiovascular Disease and Lipid and Lipoprotein Levels. 2024 Mar 31. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Muzumdar R, Purnell J, Rey R, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–. PMID: 33945244.
  13. Pasdar Y, Moradi S, Esfahani NH, Darbandi M, Niazi P. Intake of Animal Source Foods in Relation to Risk of Metabolic Syndrome. Prev Nutr Food Sci. 2020 Jun 30;25(2):133-139. doi: 10.3746/pnf.2020.25.2.133. PMID: 32676463; PMCID: PMC7333013.
  14. Borgi L, Curhan GC, Willett WC, Hu FB, Satija A, Forman JP. Long-term intake of animal flesh and risk of developing hypertension in three prospective cohort studies. J Hypertens. 2015 Nov;33(11):2231-8. doi: 10.1097/HJH.0000000000000722. PMID: 26237562; PMCID: PMC4797063.
  15. Alkerwi A, Sauvageot N, Buckley JD, Donneau AF, Albert A, Guillaume M, Crichton GE. The potential impact of animal protein intake on global and abdominal obesity: evidence from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study. Public Health Nutr. 2015 Jul;18(10):1831-8. doi: 10.1017/S1368980014002596. Epub 2015 Jan 22. PMID: 25611401; PMCID: PMC10271600.
  16. Medawar E, Enzenbach C, Roehr S, Villringer A, Riedel-Heller SG, Witte AV. Less Animal-Based Food, Better Weight Status: Associations of the Restriction of Animal-Based Product Intake with Body-Mass-Index, Depressive Symptoms and Personality in the General Population. Nutrients. 2020 May 20;12(5):1492. doi: 10.3390/nu12051492. PMID: 32443920; PMCID: PMC7284911.
  17. Ojo O, Ojo OO, Zand N, Wang X. The Effect of Dietary Fibre on Gut Microbiota, Lipid Profile, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients. 2021 May 26;13(6):1805. doi: 10.3390/nu13061805. PMID: 34073366; PMCID: PMC8228854.
  18. Cronin P, Joyce SA, O'Toole PW, O'Connor EM. Dietary Fibre Modulates the Gut Microbiota. Nutrients. 2021 May 13;13(5):1655. doi: 10.3390/nu13051655. PMID: 34068353; PMCID: PMC8153313..
  19. Fu J, Zheng Y, Gao Y, Xu W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms. 2022 Dec 18;10(12):2507. doi: 10.3390/microorganisms10122507. PMID: 36557760; PMCID: PMC9787832.
  20. Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021 Feb;18(2):101-116. doi: 10.1038/s41575-020-00375-4. Epub 2020 Nov 18. PMID: 33208922.
  21. Abeyrathne EDNS, Nam K, Huang X, Ahn DU. Plant- and Animal-Based Antioxidants' Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants (Basel). 2022 May 23;11(5):1025. doi: 10.3390/antiox11051025. PMID: 35624889; PMCID: PMC9137533.
  22. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int J Mol Sci. 2017 Jan 5;18(1):96. doi: 10.3390/ijms18010096. PMID: 28067795; PMCID: PMC5297730.
  23. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024 May;98(5):1323-1367. doi: 10.1007/s00204-024-03696-4. Epub 2024 Mar 14. PMID: 38483584; PMCID: PMC11303474.
  24. Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli SM. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: in Physiology and in Disease States. Am J Biomed Sci Res. 2022;15(2):153-177. Epub 2022 Jan 4. PMID: 35072089; PMCID: PMC8774925.
  25. Félétou M. The Endothelium: Part 1: Multiple Functions of the Endothelial Cells—Focus on Endothelium-Derived Vasoactive Mediators. San Rafael (CA): Morgan & Claypool Life Sciences; 2011. PMID: 21850763.
  26. Macho-González A, Garcimartín A, López-Oliva ME, Bastida S, Benedí J, Ros G, Nieto G, Sánchez-Muniz FJ. Can Meat and Meat-Products Induce Oxidative Stress? Antioxidants (Basel). 2020 Jul 20;9(7):638. doi: 10.3390/antiox9070638. PMID: 32698505; PMCID: PMC7402184.
  27. Membrino V, Di Paolo A, Di Crescenzo T, Cecati M, Alia S, Vignini A. Effects of Animal-Based and Plant-Based Nitrates and Nitrites on Human Health: Beyond Nitric Oxide Production. Biomolecules. 2025 Feb 7;15(2):236. doi: 10.3390/biom15020236. PMID: 40001539; PMCID: PMC11852942.
  28. Tan BL, Norhaizan ME, Liew WP. Nutrients and Oxidative Stress: Friend or Foe? Oxid Med Cell Longev. 2018 Jan 31;2018:9719584. doi: 10.1155/2018/9719584. PMID: 29643982; PMCID: PMC5831951..
  29. Canyelles M, Borràs C, Rotllan N, Tondo M, Escolà-Gil JC, Blanco-Vaca F. Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? Int J Mol Sci. 2023 Jan 18;24(3):1940. doi: 10.3390/ijms24031940. PMID: 36768264; PMCID: PMC9916030.
  30. Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020 May;128(5):353-366. doi: 10.1111/apm.13038. Epub 2020 Mar 30. PMID: 32108960; PMCID: PMC7318354.
  31. Oktaviono YH, Dyah Lamara A, Saputra PBT, Arnindita JN, Pasahari D, Saputra ME, Suasti NMA. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. Biomol Biomed. 2023 Nov 3;23(6):936-948. doi: 10.17305/bb.2023.8893. PMID: 37337893; PMCID: PMC10655873.
  32. Wang B, Qiu J, Lian J, Yang X, Zhou J. Gut Metabolite Trimethylamine-N-Oxide in Atherosclerosis: From Mechanism to Therapy. Front Cardiovasc Med. 2021 Nov 23;8:723886. doi: 10.3389/fcvm.2021.723886. PMID: 34888358; PMCID: PMC8650703.
  33. Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021 Feb 11;20:301-319. doi: 10.17179/excli2020-3239. PMID: 33746664; PMCID: PMC7975634.
  34. Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants (Basel). 2019 Sep 25;8(10):429. doi: 10.3390/antiox8100429. PMID: 31557858; PMCID: PMC6827023.
  35. Lin J, Forman MR, Wang J, Grossman HB, Chen M, Dinney CP, Hawk ET, Wu X. Intake of red meat and heterocyclic amines, metabolic pathway genes and bladder cancer risk. Int J Cancer. 2012 Oct 15;131(8):1892-903. doi: 10.1002/ijc.27437. Epub 2012 Mar 6. PMID: 22261697; PMCID: PMC3415602.
  36. Koszucka A, Nowak A. Thermal processing food-related toxicants: a review. Crit Rev Food Sci Nutr. 2019;59(22):3579-3596. doi: 10.1080/10408398.2018.1500440. Epub 2018 Oct 12. PMID: 30311772.
  37. Macho-González A, Garcimartín A, López-Oliva ME, Bastida S, Benedí J, Ros G, Nieto G, Sánchez-Muniz FJ. Can Meat and Meat-Products Induce Oxidative Stress? Antioxidants (Basel). 2020 Jul 20;9(7):638. doi: 10.3390/antiox9070638. PMID: 32698505; PMCID: PMC7402184.
  38. Azemati B, Rajaram S, Jaceldo-Siegl K, Sabate J, Shavlik D, Fraser GE, Haddad EH. Animal-Protein Intake Is Associated with Insulin Resistance in Adventist Health Study 2 (AHS-2) Calibration Substudy Participants: A Cross-Sectional Analysis. Curr Dev Nutr. 2017 Mar 15;1(4):e000299. doi: 10.3945/cdn.116.000299. PMID: 29955699; PMCID: PMC5998345.
  39. Lovejoy JC. The influence of dietary fat on insulin resistance. Curr Diab Rep. 2002 Oct;2(5):435-40. doi: 10.1007/s11892-002-0098-y. PMID: 12643169.
  40. Adeva-Andany MM, González-Lucán M, Fernández-Fernández C, Carneiro-Freire N, Seco-Filgueira M, Pedre-Piñeiro AM. Effect of diet composition on insulin sensitivity in humans. Clin Nutr ESPEN. 2019 Oct;33:29-38. doi: 10.1016/j.clnesp.2019.05.014. Epub 2019 Jun 6. PMID: 31451269.
  41. Sluijs I, Beulens JW, van der A DL, Spijkerman AM, Grobbee DE, van der Schouw YT. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010 Jan;33(1):43-8. doi: 10.2337/dc09-1321. Epub 2009 Oct 13. PMID: 19825820; PMCID: PMC2797984.
  42. Chen Z, Zuurmond MG, van der Schaft N, Nano J, Wijnhoven HAH, Ikram MA, Franco OH, Voortman T. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Eur J Epidemiol. 2018 Sep;33(9):883-893. doi: 10.1007/s10654-018-0414-8. Epub 2018 Jun 8. PMID: 29948369; PMCID: PMC6133017.
  43. Martins FO, Conde SV. Impact of Diet Composition on Insulin Resistance. Nutrients. 2022 Sep 9;14(18):3716. doi: 10.3390/nu14183716. PMID: 36145093; PMCID: PMC9505491.
  44. Grajeda-Iglesias C, Aviram M. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article. Rambam Maimonides Med J. 2018 Jul 30;9(3):e0022. doi: 10.5041/RMMJ.10337. PMID: 29944113; PMCID: PMC6115485.
  45. Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol. 2020 Sep 28;11:551758. doi: 10.3389/fimmu.2020.551758. PMID: 33117340; PMCID: PMC7549398.
  46. Xu B, Wang M, Pu L, Shu C, Li L, Han L. Association of dietary intake of branched-chain amino acids with long-term risks of CVD, cancer and all-cause mortality. Public Health Nutr. 2021 Dec 21;25(12):1-11. doi: 10.1017/S1368980021004948. Epub ahead of print. PMID: 34930509; PMCID: PMC9991783.
  47. Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, Zhu BD, Wei ZH, Li R, Li CY, Zhou GY, Tan ZJ, Zhou HP, Li CX, Gao HK, Qin XJ, Lian K. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages. Redox Biol. 2023 Jun;62:102696. doi: 10.1016/j.redox.2023.102696. Epub 2023 Apr 5. PMID: 37058999; PMCID: PMC10130699.
  48. McGarrah RW, White PJ. Branched-chain amino acids in cardiovascular disease. Nat Rev Cardiol. 2023 Feb;20(2):77-89. doi: 10.1038/s41569-022-00760-3. Epub 2022 Sep 5. PMID: 36064969; PMCID: PMC10284296.
  49. Anand SK, Governale TA, Zhang X, Razani B, Yurdagul A Jr, Pattillo CB, Rom O. Amino Acid Metabolism and Atherosclerotic Cardiovascular Disease. Am J Pathol. 2024 Apr;194(4):510-524. doi: 10.1016/j.ajpath.2023.12.006. Epub 2024 Jan 1. PMID: 38171450; PMCID: PMC10988767.
  50. Fine KS, Wilkins JT, Sawicki KT. Circulating Branched Chain Amino Acids and Cardiometabolic Disease. J Am Heart Assoc. 2024 Apr 2;13(7):e031617. doi: 10.1161/JAHA.123.031617. Epub 2024 Mar 18. PMID: 38497460; PMCID: PMC11179788..
  51. Lee DH, Tabung FK, Giovannucci EL. Association of animal and plant protein intakes with biomarkers of insulin and insulin-like growth factor axis. Clin Nutr. 2022 Jun;41(6):1272-1280. doi: 10.1016/j.clnu.2022.04.003. Epub 2022 Apr 14. PMID: 35504170; PMCID: PMC9167756..
  52. Hoppe C, Udam TR, Lauritzen L, Mølgaard C, Juul A, Michaelsen KF. Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr. 2004 Aug;80(2):447-52. doi: 10.1093/ajcn/80.2.447. PMID: 15277169.
  53. Romo Ventura E, Konigorski S, Rohrmann S, Schneider H, Stalla GK, Pischon T, Linseisen J, Nimptsch K. Association of dietary intake of milk and dairy products with blood concentrations of insulin-like growth factor 1 (IGF-1) in Bavarian adults. Eur J Nutr. 2020 Jun;59(4):1413-1420. doi: 10.1007/s00394-019-01994-7. Epub 2019 May 14. PMID: 31089868.
  54. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010 Jun;110(6):911-16.e12. doi: 10.1016/j.jada.2010.03.018. PMID: 20497781; PMCID: PMC3704564.
  55. Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes. 2023 Jul 15;14(7):995-1012. doi: 10.4239/wjd.v14.i7.995. PMID: 37547584; PMCID: PMC10401445.
  56. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells. 2022 Apr 12;11(8):1312. doi: 10.3390/cells11081312. PMID: 35455991; PMCID: PMC9029922.
  57. Jiao L, Kramer JR, Chen L, Rugge M, Parente P, Verstovsek G, Alsarraj A, El-Serag HB. Dietary consumption of meat, fat, animal products and advanced glycation end-products and the risk of Barrett's oesophagus. Aliment Pharmacol Ther. 2013 Oct;38(7):817-24. doi: 10.1111/apt.12459. Epub 2013 Aug 19. PMID: 23957669; PMCID: PMC3811083.
  58. Zawada A, Machowiak A, Rychter AM, Ratajczak AE, Szymczak-Tomczak A, Dobrowolska A, Krela-Kaźmierczak I. Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients. 2022 Sep 25;14(19):3982. doi: 10.3390/nu14193982. PMID: 36235635; PMCID: PMC9572209.
  59. Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020 Dec;33(2):298-311. doi: 10.1017/S0954422420000104. Epub 2020 Apr 2. PMID: 32238213.
  60. Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients. 2010 Dec;2(12):1247-65. doi: 10.3390/nu2121247. Epub 2010 Dec 13. PMID: 22254007; PMCID: PMC3257625.
  61. He M, Shi J, Liu A, Xu YJ, Liu Y. Antibiotic-induced gut microbiota dysbiosis altered host metabolism. Mol Omics. 2023 May 9;19(4):330-339. doi: 10.1039/d2mo00284a. PMID: 36852671.
  62. Dahiya D, Nigam PS. Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota-Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. Int J Mol Sci. 2023 Feb 4;24(4):3074. doi: 10.3390/ijms24043074. PMID: 36834485; PMCID: PMC9959899.
  63. Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Crit Rev Food Sci Nutr. 2022;62(6):1427-1452. doi: 10.1080/10408398.2020.1843396. Epub 2020 Nov 16. PMID: 33198506.
  64. Taitz JJ, Tan J, Ni D, Potier-Villette C, Grau G, Nanan R, Macia L. Antibiotic-mediated dysbiosis leads to activation of inflammatory pathways. Front Immunol. 2025 Jan 9;15:1493991. doi: 10.3389/fimmu.2024.1493991. PMID: 39850904; PMCID: PMC11754057.
  65. Fang X, An P, Wang H, Wang X, Shen X, Li X, Min J, Liu S, Wang F. Dietary intake of heme iron and risk of cardiovascular disease: a dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis. 2015 Jan;25(1):24-35. doi: 10.1016/j.numecd.2014.09.002. Epub 2014 Sep 30. PMID: 25439662.
  66. Hooda J, Shah A, Zhang L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 2014 Mar 13;6(3):1080-102. doi: 10.3390/nu6031080. PMID: 24633395; PMCID: PMC3967179.
  67. Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila). 2011 Feb;4(2):177-84. doi: 10.1158/1940-6207.CAPR-10-0113. Epub 2011 Jan 5. PMID: 21209396.
  68. Misra R, Balagopal P, Raj S, Patel TG. Red Meat Consumption (Heme Iron Intake) and Risk for Diabetes and Comorbidities? Curr Diab Rep. 2018 Sep 18;18(11):100. doi: 10.1007/s11892-018-1071-8. PMID: 30229313.
  69. Omaye AT, Omaye ST. Caveats for the Good and Bad of Dietary Red Meat. Antioxidants (Basel). 2019 Nov 12;8(11):544. doi: 10.3390/antiox8110544. PMID: 31726758; PMCID: PMC6912709.
  70. Genkinger JM, Friberg E, Goldbohm RA, Wolk A. Long-term dietary heme iron and red meat intake in relation to endometrial cancer risk. Am J Clin Nutr. 2012 Oct;96(4):848-54. doi: 10.3945/ajcn.112.039537. Epub 2012 Sep 5. PMID: 22952183.
  71. Quintana Pacheco DA, Sookthai D, Wittenbecher C, Graf ME, Schübel R, Johnson T, Katzke V, Jakszyn P, Kaaks R, Kühn T. Red meat consumption and risk of cardiovascular diseases-is increased iron load a possible link? Am J Clin Nutr. 2018 Jan 1;107(1):113-119. doi: 10.1093/ajcn/nqx014. PMID: 29381787.
  72. Czerwonka M, Tokarz A. Iron in red meat-friend or foe. Meat Sci. 2017 Jan;123:157-165. doi: 10.1016/j.meatsci.2016.09.012. Epub 2016 Oct 2. PMID: 27744145.
  73. Montecillo J, Pirker T, Pemberton C, Chew-Harris J. suPAR in cardiovascular disease. Adv Clin Chem. 2024;121:89-131. doi: 10.1016/bs.acc.2024.04.005. Epub 2024 Apr 25. PMID: 38797545.
  74. Wohlwend NF, Grossmann K, Aeschbacher S, Weideli OC, Telser J, Risch M, Conen D, Risch L. The Association of suPAR with Cardiovascular Risk Factors in Young and Healthy Adults. Diagnostics (Basel). 2023 Sep 13;13(18):2938. doi: 10.3390/diagnostics13182938. PMID: 37761305; PMCID: PMC10530210.
  75. Ismail A, Hayek SS. Role of Soluble Urokinase-Type Plasminogen Activator Receptor in Cardiovascular Disease. Curr Cardiol Rep. 2023 Dec;25(12):1797-1810. doi: 10.1007/s11886-023-01991-7. Epub 2023 Nov 10. PMID: 37948017.
  76. Hodges G, Lyngbæk S, Selmer C, Ahlehoff O, Theilade S, Sehestedt TB, Abildgaard U, Eugen-Olsen J, Galløe AM, Hansen PR, Jeppesen JL, Bang CN. SuPAR is associated with death and adverse cardiovascular outcomes in patients with suspected coronary artery disease. Scand Cardiovasc J. 2020 Dec;54(6):339-345. doi: 10.1080/14017431.2020.1762917. Epub 2020 May 13. PMID: 32400206.
  77. Diederichsen MZ, Diederichsen SZ, Mickley H, Steffensen FH, Lambrechtsen J, Sand NPR, Christensen KL, Olsen MH, Diederichsen A, Grønhøj MH. Prognostic value of suPAR and hs-CRP on cardiovascular disease. Atherosclerosis. 2018 Apr;271:245-251. doi: 10.1016/j.atherosclerosis.2018.01.029. Epub 2018 Jan 31. PMID: 29402404.
  78. Kawanishi K, Dhar C, Do R, Varki N, Gordts PLSM, Varki A. Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):16036-16045. doi: 10.1073/pnas.1902902116. Epub 2019 Jul 22. PMID: 31332008; PMCID: PMC6690033.
  79. Kawanishi K, Coker JK, Grunddal KV, Dhar C, Hsiao J, Zengler K, Varki N, Varki A, Gordts PLSM. Dietary Neu5Ac Intervention Protects Against Atherosclerosis Associated With Human-Like Neu5Gc Loss-Brief Report. Arterioscler Thromb Vasc Biol. 2021 Nov;41(11):2730-2739. doi: 10.1161/ATVBAHA.120.315280. Epub 2021 Sep 30. PMID: 34587757; PMCID: PMC8551057.
  80. Pham T, Gregg CJ, Karp F, Chow R, Padler-Karavani V, Cao H, Chen X, Witztum JL, Varki NM, Varki A. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood. 2009 Dec 10;114(25):5225-35. doi: 10.1182/blood-2009-05-220400. PMID: 19828701; PMCID: PMC2792214.
  81. Bashir S, Fezeu LK, Leviatan Ben-Arye S, Yehuda S, Reuven EM, Szabo de Edelenyi F, Fellah-Hebia I, Le Tourneau T, Imbert-Marcille BM, Drouet EB, Touvier M, Roussel JC, Yu H, Chen X, Hercberg S, Cozzi E, Soulillou JP, Galan P, Padler-Karavani V. Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Santé study. BMC Med. 2020 Sep 23;18(1):262. doi: 10.1186/s12916-020-01721-8. PMID: 32962714; PMCID: PMC7510162.
  82. Lind PM, Lind L. Are Persistent Organic Pollutants Linked to Lipid Abnormalities, Atherosclerosis and Cardiovascular Disease? A Review. J Lipid Atheroscler. 2020 Sep;9(3):334-348. doi: 10.12997/jla.2020.9.3.334. Epub 2020 Aug 5. PMID: 33024729; PMCID: PMC7521972.
  83. Perkins JT, Petriello MC, Newsome BJ, Hennig B. Polychlorinated biphenyls and links to cardiovascular disease. Environ Sci Pollut Res Int. 2016 Feb;23(3):2160-72. doi: 10.1007/s11356-015-4479-6. Epub 2015 Apr 17. PMID: 25877901; PMCID: PMC4609220.
  84. Zeliger HI. Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip Toxicol. 2013 Jun;6(2):55-62. doi: 10.2478/intox-2013-0010. PMID: 24179429; PMCID: PMC3798856.
  85. Haffner D, Schecter A. Persistent Organic Pollutants (POPs): A primer for practicing clinicians. Curr Envir Health Rpt. 2014;1:123-131. doi: 10.1007/s40572-014-0009-9.
  86. Srour B, Chazelas E, Fezeu LK, Javaux G, Pierre F, Huybrechts I, Hercberg S, Deschasaux-Tanguy M, Kesse-Guyot E, Touvier M. Nitrites, Nitrates, and Cardiovascular Outcomes: Are We Living "La Vie en Rose" With Pink Processed Meats? J Am Heart Assoc. 2022 Dec 20;11(24):e027627. doi: 10.1161/JAHA.122.027627. Epub 2022 Dec 19. PMID: 36533633; PMCID: PMC9798789.
  87. Kotopoulou S, Zampelas A, Magriplis E. Nitrite and nitrate intake from processed meat is associated with elevated diastolic blood pressure (DBP). Clin Nutr. 2023 May;42(5):784-792. doi: 10.1016/j.clnu.2023.03.015. Epub 2023 Mar 21. PMID: 37023524..
  88. Shakil MH, Trisha AT, Rahman M, Talukdar S, Kobun R, Huda N, Zzaman W. Nitrites in Cured Meats, Health Risk Issues, Alternatives to Nitrites: A Review. Foods. 2022 Oct 25;11(21):3355. doi: 10.3390/foods11213355. PMID: 36359973; PMCID: PMC9654915.
  89. Ruiz-Saavedra S, Pietilä TK, Zapico A, de Los Reyes-Gavilán CG, Pajari AM, González S. Dietary Nitrosamines from Processed Meat Intake as Drivers of the Fecal Excretion of Nitrosocompounds. J Agric Food Chem. 2024 Aug 7;72(31):17588-17598. doi: 10.1021/acs.jafc.4c05751. Epub 2024 Jul 29. PMID: 39072357; PMCID: PMC11311235.
  90. Larsson SC, Bergkvist L, Wolk A. Processed meat consumption, dietary nitrosamines and stomach cancer risk in a cohort of Swedish women. Int J Cancer. 2006 Aug 15;119(4):915-9. doi: 10.1002/ijc.21925. PMID: 16550597.
  91. Turesky RJ. Mechanistic Evidence for Red Meat and Processed Meat Intake and Cancer Risk: A Follow-up on the International Agency for Research on Cancer Evaluation of 2015. Chimia (Aarau). 2018 Oct 31;72(10):718-724. doi: 10.2533/chimia.2018.718. PMID: 30376922; PMCID: PMC6294997.
  92. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red Meat and Processed Meat. Lyon (FR): International Agency for Research on Cancer; 2018. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 114.).
  93. Kyriazis ID, Vassi E, Alvanou M, Angelakis C, Skaperda Z, Tekos F, Garikipati VNS, Spandidos DA, Kouretas D. The impact of diet upon mitochondrial physiology (Review). Int J Mol Med. 2022 Nov;50(5):135. doi: 10.3892/ijmm.2022.5191. Epub 2022 Sep 21. PMID: 36129147; PMCID: PMC9542544.
  94. Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci. 2021 Mar 30;22(7):3574. doi: 10.3390/ijms22073574. PMID: 33808221; PMCID: PMC8036520.
  95. Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, Menéndez JA, Joven J. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm. 2013;2013:135698. doi: 10.1155/2013/135698. Epub 2013 Feb 28. PMID: 23533299; PMCID: PMC3603328.
  96. Galiè S, Canudas S, Muralidharan J, García-Gavilán J, Bulló M, Salas-Salvadó J. Impact of Nutrition on Telomere Health: Systematic Review of Observational Cohort Studies and Randomized Clinical Trials. Adv Nutr. 2020 May 1;11(3):576-601. doi: 10.1093/advances/nmz107. PMID: 31688893; PMCID: PMC7231592.
  97. O'Callaghan NJ, Toden S, Bird AR, Topping DL, Fenech M, Conlon MA. Colonocyte telomere shortening is greater with dietary red meat than white meat and is attenuated by resistant starch. Clin Nutr. 2012 Feb;31(1):60-4. doi: 10.1016/j.clnu.2011.09.003. Epub 2011 Oct 1. PMID: 21963168.
  98. D'Angelo S. Diet and Aging: The Role of Polyphenol-Rich Diets in Slow Down the Shortening of Telomeres: A Review. Antioxidants (Basel). 2023 Dec 7;12(12):2086. doi: 10.3390/antiox12122086. PMID: 38136206; PMCID: PMC10740764.
  99. Crous-Bou M, Molinuevo JL, Sala-Vila A. Plant-Rich Dietary Patterns, Plant Foods and Nutrients, and Telomere Length. Adv Nutr. 2019 Nov 1;10(Suppl_4):S296-S303. doi: 10.1093/advances/nmz026. PMID: 31728493; PMCID: PMC6855941.
  100. Li X, Li M, Cheng J, Guan S, Hou L, Zu S, Yang L, Wu H, Li H, Fan Y, Zhang B. Association of healthy and unhealthy plant-based diets with telomere length. Clin Nutr. 2024 Aug;43(8):1694-1701. doi: 10.1016/j.clnu.2024.06.004. Epub 2024 Jun 8. PMID: 38879916.
  101. Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011 Aug;30(4):416-21. doi: 10.1016/j.clnu.2011.03.008. Epub 2011 Apr 9. PMID: 21481501.
  102. Carnauba RA, Baptistella AB, Paschoal V, Hübscher GH. Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review. Nutrients. 2017 May 25;9(6):538. doi: 10.3390/nu9060538. PMID: 28587067; PMCID: PMC5490517.
  103. Goraya N, Wesson DE. Pathophysiology of Diet-Induced Acid Stress. Int J Mol Sci. 2024 Feb 16;25(4):2336. doi: 10.3390/ijms25042336. PMID: 38397012; PMCID: PMC10888592.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search