Covid-19 Research

Clinical Study

OCLC Number/Unique Identifier:

A Clinical Study to Assess the Safety and Pharmacokinetics of Orally Administered Strontium L-lactate in Healthy Adults

Medicine Group    Start Submission

Deanna JN*, Kristen S and Eunice M

Volume6-Issue7
Dates: Received: 2025-07-09 | Accepted: 2025-07-25 | Published: 2025-07-27
Pages: 951-961

Abstract

Purpose: Strontium salts may provide support for bone health and treatment for osteoporosis, but the safety and effectiveness of these salts is not completely understood. The aim of this clinical study (NCT03761979) was to obtain safety and pharmacokinetic information following acute oral intakes of three ascending doses of strontium L-lactate by healthy adults.

Subject methods: Ten healthy men and women, mean age 43 ± 2 years, ingested one of three ascending doses of strontium L-lactate (SrLac) once per week for three weeks in succession. All subjects were administered the Study Product in a sequential manner such that the lowest amount (170 mg Sr) was provided at Visit 2, the next highest amount (340 mg Sr) was provided at Visit 3, and the highest amount (680 mg Sr) was provided at Visit 4. At each visit, fasting blood collections were performed pre-dose and 1, 2, 3, 4, 5, 6, 8 and 12 hours’ post-dose to determine serum strontium at each interval.

Results: The pharmacokinetics related to each of three doses of SrLac that were administered to fasted subjects were similar to the findings for other strontium salts. At a dose of 170 mg strontium, a mean serum Cmax of 2.6 ± 0.6 mg Sr/dL was observed about 3.1 h after ingestion. A dose of 340 mg strontium exhibited a mean serum Cmax of 6.4 ± 1.8 mg Sr/dL about 3.2 h after ingestion. At a dose of 680 mg strontium, a mean serum Cmax of 9.3 ± 2.1 mg Sr/dL was observed about 2.8 h after ingestion. Oral bioavailability was high, reflecting the high solubility of SrLac in water and intestinal fluid. The data suggest that between 27% and 34% of the administered dose was absorbed. At these doses, no strontium-related adverse effects were observed.

Conclusion: This clinical study in 10 normal adults (50% females) showed that the strontium ion in SrLac is readily bioavailable after oral administration. The intervention was conducted per study protocol, and no clinically significant protocol deviations occurred. Pharmacokinetic data indicated that doses of 170 and 340 mg strontium provided serum strontium concentrations in ranges known to be beneficial for the treatment of low bone density of osteoporosis and osteopenia. No product-related adverse events were observed.

FullText HTML FullText PDF DOI: 10.37871/jbres2150


Certificate of Publication




Copyright

© 2025 Deanna JN, et al., Distributed under Creative Commons CC-BY 4.0

How to cite this article

Deanna JN, Kristen S, Eunice M. A Clinical Study to Assess the Safety and Pharmacokinetics of Orally Administered Strontium L-lactate in Healthy Adults. J Biomed Res Environ Sci. 2025 Jul 27; 6(7): 951-961. doi: 10.37871/jbres2150, Article ID: JBRES2150, Available at: https://www.jelsciences.com/articles/jbres2150.pdf


Subject area(s)

References


  1. Bongaarts J. Global fertility and population trends. Semin Reprod Med. 2015 Jan; 33(1): 5-10. doi: 10.1055/s-0034-1395272. PubMed PMID: 25565505.
  2. Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US); 2004. PMID: 20945569.
  3. Xiao PL, Cui AY, Hsu CJ, Peng R, Jiang N, Xu XH, Ma YG, Liu D, Lu HD. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporos Int. 2022 Oct;33(10):2137-2153. doi: 10.1007/s00198-022-06454-3. PMID: 35687123.
  4. Weinstein RS. Glucocorticoids, osteocytes, and skeletal fragility: The role of bone vascularity. Bone 2010 Mar; 46(3): 564-70. PubMed PMID: 19591965; PubMed Central PMCID: PMC2823999.
  5. GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024 May 18;403(10440):2133-2161. doi: 10.1016/S0140-6736(24)00757-8. PMID: 38642570; PMCID: PMC11122111.
  6. GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024 May 18;403(10440):2133-2161. doi: 10.1016/S0140-6736(24)00757-8. Epub 2024 Apr 17. PMID: 38642570; PMCID: PMC11122111.
  7. Levinger I, Brennan-Speranza TC, Zulli A, Parker L, Lin X, Lewis JR, Yeap BB. Multifaceted interaction of bone, muscle, lifestyle interventions and metabolic and cardiovascular disease: role of osteocalcin. Osteoporos Int. 2017 Aug;28(8):2265-2273. doi: 10.1007/s00198-017-3994-3. Epub 2017 Mar 13. PMID: 28289780.
  8. Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, Nimphius S. Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact. 2020 Sep 1;20(3):347-371. PMID: 32877972; PMCID: PMC7493450.
  9. McCaslin FE, Janes JM. The effect of strontium lactate in the treatment of osteoporosis. Proc Staff Mtgs Mayo Clinic. 1959;34(13):329-334.
  10. Pilmane M, Salma-Ancane K, Loca D, Locs J, Berzina-Cimdina L. Strontium and strontium ranelate: Historical review of some of their functions. Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:1222-1230. doi: 10.1016/j.msec.2017.05.042. Epub 2017 May 9. PMID: 28575961.
  11. Maria S, Swanson MH, Enderby LT, D'Amico F, Enderby B, Samsonraj RM, Dudakovic A, van Wijnen AJ, Witt-Enderby PA. Melatonin-micronutrients Osteopenia Treatment Study (MOTS): a translational study assessing melatonin, strontium (citrate), vitamin D3 and vitamin K2 (MK7) on bone density, bone marker turnover and health related quality of life in postmenopausal osteopenic women following a one-year double-blind RCT and on osteoblast-osteoclast co-cultures. Aging (Albany NY). 2017 Jan 26;9(1):256-285. doi: 10.18632/aging.101158. PMID: 28130552; PMCID: PMC5310667.
  12. Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep. 2020 Apr 24;12:100273. doi: 10.1016/j.bonr.2020.100273. PMID: 32395571; PMCID: PMC7210412.
  13. Kołodziejska B, Stępień N, Kolmas J. The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int J Mol Sci. 2021 Jun 18;22(12):6564. doi: 10.3390/ijms22126564. PMID: 34207344; PMCID: PMC8235140.
  14. Tomczyk-Warunek A, Turżańska K, Posturzyńska A, Kowal F, Blicharski T, Pano IT, Winiarska-Mieczan A, Nikodem A, Dresler S, Sowa I, Wójciak M, Dobrowolski P. Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis. Int J Mol Sci. 2024 Apr 6;25(7):4075. doi: 10.3390/ijms25074075. PMID: 38612883; PMCID: PMC11012416.
  15. Cianferotti L, D'Asta F, Brandi ML. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis. 2013 Jun; 5(3): 127-39. PubMed PMID: 23858336; PubMed Central PMCID: PMC3707343.
  16. Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther. 2012 Nov;136(2):216-26. doi: 10.1016/j.pharmthera.2012.07.009. Epub 2012 Jul 20. PMID: 22820094.
  17. Zacchetti G, Dayer R, Rizzoli R, Ammann P. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int. 2014;2014:549785. doi: 10.1155/2014/549785. Epub 2014 Aug 28. PMID: 25243150; PMCID: PMC4163478.
  18. Reginster JY, Kaufman JM, Goemaere S, Devogelaer JP, Benhamou CL, Felsenberg D, Diaz-Curiel M, Brandi ML, Badurski J, Wark J, Balogh A, Bruyère O, Roux C. Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int. 2012 Mar;23(3):1115-22. doi: 10.1007/s00198-011-1847-z. Epub 2011 Nov 29. PMID: 22124575; PMCID: PMC3277702.
  19. Khalid S, Calderon-Larrañaga S, Hawley S, Ali MS, Judge A, Arden N, van Staa T, Cooper C, Javaid MK, Prieto-Alhambra D. Comparative anti-fracture effectiveness of different oral anti-osteoporosis therapies based on "real-world" data: a meta-analysis of propensity-matched cohort findings from the UK Clinical Practice Research Database and the Catalan SIDIAP Database. Clin Epidemiol. 2018 Oct 9;10:1417-1431. doi: 10.2147/CLEP.S164112. PMID: 30349390; PMCID: PMC6183551.
  20. Skoryna SC. Effects of oral supplementation with stable strontium. Can Med Assoc J. 1981 Oct 1;125(7):703-12. PMID: 6120036; PMCID: PMC1862446.
  21. Hansen C, Nilsson H, Christgau S, Andersen JEF. Water-soluble strontium salts for use in treatment of cartilage and bone conditions. U.S. Patent No. 7,595,342. Date of patent. 2009.
  22. (a) Martín-Merino E, Petersen I, Hawley S, Álvarez-Gutierrez A, Khalid S, Llorente-Garcia A, Delmestri A, Javaid MK, Van Staa TP, Judge A, Cooper C, Prieto-Alhambra D. Risk of venous thromboembolism among users of different anti-osteoporosis drugs: a population-based cohort analysis including over 200,000 participants from Spain and the UK. Osteoporos Int. 2018 Feb;29(2):467-478. doi: 10.1007/s00198-017-4308-5. PMID: 29199359.
  23. (b) Ali MS, Berencsi K, Marinier K, Deltour N, Perez-Guthann S, Pedersen L, Rijnbeek P, Lapi F, Simonetti M, Reyes C, Van der Lei J, Sturkenboom M, Prieto-Alhambra D. Comparative cardiovascular safety of strontium ranelate and bisphosphonates: a multi-database study in 5 EU countries by the EU-ADR Alliance. Osteoporos Int. 2020 Dec;31(12):2425-2438. doi: 10.1007/s00198-020-05580-0. Epub 2020 Aug 5. PMID: 32757044.
  24. The study protocol has been published at clinical trials. gov (NCT03761979).
  25. Shiang KD. The SAS calculations of Areas Under the Curve (AUC) for multiple metabolic readings. SAS Conference Proceedings Western Users of SAS (WUSS). 2004.
  26. Matos-Pita AS, Bernardo de Miguel L. Non-compartmental pharmacokinetics and bioequivalence analysis. In: Phoenix AZ, editor. SAS Institute Inc., Pharmaceutical Industry SAS® Users Group (PharmaSUG); 2005.
  27. Moraes ME, Aronson JK, Grahame-Smith DG. Intravenous strontium gluconate as a kinetic marker for calcium in healthy volunteers. Br J Clin Pharmacol. 1991;31(4):423-7.
  28. Höllriegl V, Li WB, Oeh U, Roth P. Methods for assessing gastrointestinal absorption of strontium in humans by stable tracer techniques. Health Phys. 2006 Mar;90(3):232-40. doi: 10.1097/01.HP.0000180867.60763.4b. PMID: 16505620.
  29. Höllriegl V, Louvat P, Werner E, Roth P, Schramel P, Wendler I, Felgenhauer N, Zilker T. Studies of strontium biokinetics in humans. Part 2: uptake of strontium from aqueous solutions and labelled foodstuffs. Radiat Environ Biophys. 2002 Dec;41(4):281-7. doi: 10.1007/s00411-002-0175-2. Epub 2002 Dec 19. Erratum in: Radiat Environ Biophys. 2003 Jul;42(2):137-8. PMID: 12541074.
  30. Sips AJ, van der Vijgh WJ, Barto R, Netelenbos JC. Intestinal absorption of strontium chloride in healthy volunteers: pharmacokinetics and reproducibility. Br J Clin Pharmacol. 1996 Jun;41(6):543-9. PubMed PMID: 8799520; PubMed Central PMCID: PMC2042623.
  31. Sips AJ, van der Vijgh WJ, Barto R, Netelenbos JC. Intestinal strontium absorption: from bioavailability to validation of a simple test representative for intestinal calcium absorption. Clin Chem. 1995 Oct;41(10):1446-50. PubMed PMID: 7586515.
  32. Monograph: Strontium lactate. Merck’s 1907 Index. New York: Merck&Co; 1907.
  33. Papillon MF. Recherches experimentales sur les modifications de la composition immediate des os. C R Acad Sci. 1870;71:372.
  34. Skoryna SC. Effects of oral supplementation with stable strontium. Can Med Assoc J. 1981 Oct 1;125(7):703-12. PMID: 6120036; PMCID: PMC1862446.
  35. Cabrera WE, Schrooten I, De Broe ME, D'Haese PC. Strontium and bone. J Bone Miner Res. 1999 May;14(5):661-8. doi: 10.1359/jbmr.1999.14.5.661. PMID: 10320513.
  36. Querido W, Rossi AL, Farina M. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron. 2016 Jan;80:122-34. doi: 10.1016/j.micron.2015.10.006. PMID: 26546967.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search