Lakshmi N Sridhar*
Volume6-Issue6
Dates: Received: 2025-05-30 | Accepted: 2025-06-23 | Published: 2025-06-30
Pages: 829-839
Abstract
Millions of people are affected by leukemia. It is important to understand the progression dynamics of this disease to be able to minimize the damage that is caused by it. This article provides a mathematical framework to develop strategies to control leukemia. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered, and multiple objectives must be met simultaneously. Bifurcation analysis and Multiobjective Nonlinear Model Predictive Control (MNLMPC) calculations are performed on three leukemia models. The MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of limit points and branch in the models. The limit and branch points were beneficial because they enabled the multiobjective nonlinear model predictive control calculations to converge to the Utopia point in both problems, which is the most beneficial solution. A combination of bifurcation analysis and multiobjective nonlinear model predictive control for leukemia models is the main contribution of this paper.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2135
Certificate of Publication

Copyright
© 2025 Sridhar LN, Distributed under Creative Commons CC-BY 4.0
How to cite this article
Sridhar LN. Dynamics of Leukemia Models. J Biomed Res Environ Sci. 2025 Jun 30; 6(6): 829-839. doi: 10.37871/jbres2135, Article ID: JBRES2135, Available at: https://www.jelsciences.com/articles/jbres2135.pdf
Subject area(s)
References
- Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000 Nov 15;96(10):3343-56. PMID: 11071626.
- Topaly J, Zeller WJ, Fruehauf S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia. 2001 Mar;15(3):342-7. doi: 10.1038/sj.leu.2402041. PMID: 11237055.
- Deininger MW, Druker BJ. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev. 2003 Sep;55(3):401-23. doi: 10.1124/pr.55.3.4. Epub 2003 Jul 17. PMID: 12869662.
- Deininger MW, O'Brien SG, Ford JM, Druker BJ. Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol. 2003 Apr 15;21(8):1637-47. doi: 10.1200/JCO.2003.11.143. Epub 2003 Mar 13. PMID: 12668652.
- Goldman JM, Melo JV. Chronic myeloid leukemia--advances in biology and new approaches to treatment. N Engl J Med. 2003 Oct 9;349(15):1451-64. doi: 10.1056/NEJMra020777. PMID: 14534339.
- Pujo-Menjouet L, Mackey MC. Contribution to the study of periodic chronic myelogenous leukemia. C R Biol. 2004 Mar;327(3):235-44. doi: 10.1016/j.crvi.2003.05.004. PMID: 15127894.
- Baccarani M, Martinelli G, Rosti G, Trabacchi E, Testoni N, Bassi S, Amabile M, Soverini S, Castagnetti F, Cilloni D, Izzo B, de Vivo A, Messa E, Bonifazi F, Poerio A, Luatti S, Giugliano E, Alberti D, Fincato G, Russo D, Pane F, Saglio G; GIMEMA Working Party on Chronic Myeloid Leukemia. Imatinib and pegylated human recombinant interferon-alpha2b in early chronic-phase chronic myeloid leukemia. Blood. 2004 Dec 15;104(13):4245-51. doi: 10.1182/blood-2004-03-0826. Epub 2004 Aug 19. PMID: 15319292.
- Moore H, Li NK. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J Theor Biol. 2004 Apr 21;227(4):513-23. doi: 10.1016/j.jtbi.2003.11.024. PMID: 15038986.
- Adimy M, Crauste F, Ruan S. A mathematical study of the haematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math. 2005;65(4):1328. doi: 10.1137/040604698.
- Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA. Dynamics of chronic myeloid leukaemia. Nature. 2005 Jun 30;435(7046):1267-70. doi: 10.1038/nature03669. PMID: 15988530.
- Nanda S, Moore H, Lenhart S. Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math Biosci. 2007 Nov;210(1):143-56. doi: 10.1016/j.mbs.2007.05.003. Epub 2007 May 18. PMID: 17599363.
- Liso A, Castiglione F, Cappuccio A, Stracci F, Schlenk RF, Amadori S, Thiede C, Schnittger S, Valk PJ, Döhner K, Martelli MF, Schaich M, Krauter J, Ganser A, Martelli MP, Bolli N, Löwenberg B, Haferlach T, Ehninger G, Mandelli F, Döhner H, Michor F, Falini B. A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1). Haematologica. 2008 Aug;93(8):1219-26. doi: 10.3324/haematol.13209. Epub 2008 Jul 4. PMID: 18603563.
- Ommen HB, Nyvold CG, Braendstrup K, Andersen BL, Ommen IB, Hasle H, Hokland P, Ostergaard M. Relapse prediction in acute myeloid leukaemia patients in complete remission using WT1 as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. Br J Haematol. 2008 Jun;141(6):782-91. doi: 10.1111/j.1365-2141.2008.07132.x. Epub 2008 Apr 10. PMID: 18410450.
- Cucuianu A, Precup R. 2010. A hypothetical-mathematical model of acute myeloid leukaemia pathogenesis. Comput Math Methods Med. 2010;11(1):49-65. doi: 10.1080/17486700902973751.
- Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD; European LeukemiaNet. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010 Jan 21;115(3):453-74. doi: 10.1182/blood-2009-07-235358. Epub 2009 Oct 30. PMID: 19880497.
- Komarova NL. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Math Biosci Eng. 2011 Apr;8(2):289-306. doi: 10.3934/mbe.2011.8.289. PMID: 21631131.
- Stiehl T, Czochra AM. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model Nat Phenom. 2012;7(1):66-202. doi: 10.1051/mmnp/20127199.
- MacLean AL, Lo Celso C, Stumpf MP. Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled. J R Soc Interface. 2013 Jan 24;10(81):20120968. doi: 10.1098/rsif.2012.0968. PMID: 23349436; PMCID: PMC3627104.
- MacLean AL, Filippi S, Stumpf MP. The ecology in the hematopoietic stem cell niche determines the clinical outcome in chronic myeloid leukemia. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3883-8. doi: 10.1073/pnas.1317072111. Epub 2014 Feb 24. PMID: 24567385; PMCID: PMC3956166.
- Agarwal M, Bhadauria AS. Mathematical modeling and analysis leukemia: Effect of external T cells infusion. Appl Appl Math Int J. 2015;10(1):249-266.
- Clapp G, Levy D. A Review of Mathematical Models for Leukemia and Lymphoma. Drug Discov Today Dis Models. 2015 Summer;16:1-6. doi: 10.1016/j.ddmod.2014.10.002. Epub 2014 Nov 29. PMID: 26744598; PMCID: PMC4698906.
- Crowell HL, MacLean AL, Stumpf MP. Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia. J Theor Biol. 2016 Jul 21;401:43-53. doi: 10.1016/j.jtbi.2016.04.002. Epub 2016 Apr 27. PMID: 27130539; PMCID: PMC4880151.
- Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol. 2016 Jul;103:62-77. doi: 10.1016/j.critrevonc.2016.04.020. Epub 2016 May 11. PMID: 27247119.
- Zeidan AM, Mahmoud D, Kucmin-Bemelmans IT, Alleman CJ, Hensen M, Skikne B, Smith BD. Economic burden associated with acute myeloid leukemia treatment. Expert Rev Hematol. 2016 Jan;9(1):79-89. doi: 10.1586/17474086.2016.1112735. Epub 2015 Nov 14. PMID: 26568358.
- Masarova L, Kantarjian H, Garcia-Mannero G, Ravandi F, Sharma P, Daver N. Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML. Adv Exp Med Biol. 2017;995:73-95. doi: 10.1007/978-3-319-53156-4_4. PMID: 28321813.
- Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017 Jul 25;10(1):142. doi: 10.1186/s13045-017-0505-0. PMID: 28743264; PMCID: PMC5526264.
- Krupar R, Schreiber C, Offermann A, Lengerke C, Sikora AG, Thorns C, Perner S. In silico analysis of anti-leukemia immune response and immune evasion in acute myeloid leukemia. Leuk Lymphoma. 2018 Oct;59(10):2493-2496. doi: 10.1080/10428194.2018.1434883. Epub 2018 Feb 12. PMID: 29431550.
- Sharp JA, Browning AP, Mapder T, Burrage K, Simpson MJ. Optimal control of acute myeloid leukaemia. J Theor Biol. 2019 Jun 7;470:30-42. doi: 10.1016/j.jtbi.2019.03.006. Epub 2019 Mar 8. PMID: 30853393.
- Khatun MS, Biswas MHA. Mathematical analysis and optimal control applied to the treatment of leukemia. J Appl Math Comput. 2020;64:331-353. doi: 10.1007/s12190-020-01357-0.
- Dhooge A, Govearts W, Kuznetsov AY. A Matlab package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software. 2003;29(2):141-164. doi: 10.1145/779359.77936.
- Dhooge AW, Govaerts Y, Kuznetsov A, Mestrom W, Riet AM. CL_MATCONT; A continuation toolbox in Matlab. 2004;161-166. doi: 10.1145/952532.952567.
- Kuznetsov YA. Elements of applied bifurcation theory. NY:Springer;1998.
- Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht University. NL: 2009.
- Govaerts WJF. Numerical methods for bifurcations of dynamical equilibria. Siam. 2000.
- Flores-Tlacuahuac A. Pilar morales and martin riveral Toledo. Multiobjective nonlinear model predictive control of a class of chemical reactors. I & EC research. 2012;51(17):5891-5899.
- Hart, William E, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A. Hackebeil, Bethany L. Nicholson, John D. Siirola. Pyomo – Optimization modeling in python. 3rd ed; 2017.
- Wächter A, Biegler L. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106:25-57. doi: 10.1007/s10107-004-0559-y.
- Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Mathematical Programming. 2005;103(2):225-249. doi: 10.1007/s10107-005-0581-8.
- Sridhar LN. Coupling bifurcation analysis and multiobjective nonlinear model predictive control. Austin Chem Eng. 2024;10(3):1107.
- Upreti SR. Optimal control for chemical engineers. Taylor and Francis. 2013.