Taras Volodymyrovych Holubets*
Volume6-Issue6
Dates: Received: 2025-05-20 | Accepted: 2025-06-08 | Published: 2025-06-09
Pages: 600-610
Abstract
In this mini-report, the interrelated processes of heat and mass transfer, which take into account the nature of interphase interaction in moistened porous media, are examined. A closed system of balance diffusion equations for the liquid phase and components of the gas mixture of water vapor and dry air is reviewed. The energy or heat balance equation, which contains the intensity of sources of evaporation or condensation during the phase transformation of liquid into water vapor, is analyzed. The phenomenon of dielectric relaxation into a heterogeneous porous layer under the influence of a symmetric electromagnetic field of microwave frequency is modeled by an isotropic (non-magnetic) dielectric with weak or insignificant conductivity and strongly depends on pore saturation by liquid. With the help of the spatial averaging method, taking into account the interphase interaction, the equations for mechanical balance are proposed, in which the exchange integrals of the moment of impulse and mechanical forces are applied. The macroscopic equations of mechanical balance into the solid and liquid phases are proposed, from where the analytical expressions for effective thermal and moisture stresses in the porous wetted layer are obtained using the accepted approximations and taking into account the known relations for stresses in the solid and liquid phases. According to the results of the heat and mass process numerical simulation, the distribution of thermal and moisture stress is obtained.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2115
Certificate of Publication

Copyright
© 2025 Holubets TV, Distributed under Creative Commons CC-BY 4.0
How to cite this article
Holubets TV. Investigation of Mechanical Thermodiffusion Processes Under Infl uence of Microwave Irradiation. J Biomed Res Environ Sci. 2025 Jun 09; 6(6): 600-610. doi: 10.37871/jbres2115, Article ID: JBRES2115, Available at: https://www.jelsciences.com/articles/jbres2115.pdf
Subject area(s)
References
- Samarskii AA. The theory of difference schemes. Moscow: Nauka. 1989;616.
- Marchuk GI. Methods of computational mathematics. Moscow: Nauka. 1989;608.
- Shi D. Numerical methods in heat transfer problems. Moscow: Mir. 1988;544.
- Lindell IV. Methods for electromagnetic field analysis. Piscataway NJ. IEEE Press; 1995. p.320.
- Desai RA, Lowery AJ, Christopouls C, Naylor CP, Blanshard JMV, Gregson K. Computer modelling of microwave cooking using the transmission-line model. IEEE Proc A. 1992;139:30-38.
- Dibben DC, Metaxas AC. Finite element time domain analisys of multimode applicators using edge elements. J Microwave Power Electomagnetic Energy. 1994;29:242-251. doi: 10.1080/08327823.1994.11688252.
- Iskander M. Modeling the microwave process - Challenges and new directions. Ceramic Trans. 1993;36:167-199.
- Jia X, Jolly P. Simulation of microwave field and power distribution in a cavity by a three-Dimensional fi-nite element method. J Microwave Power Electomagnetic Energy. 1992;27:11-22.
- Lorenson C. The why’s and how’s of mathematical modelling of microwave heating. 1990;11:P.14-22. doi: 10.20944/preprints202505.0265.v1.
- Lorenson C, Gallerneault C. Numerical method for the modelling of microwave fields. Ceramic Trans.1991;21:193-200.
- Davis J. Finite element analysis of waveguides and cavities – A review. IEEE Trans Magnetics. 1993;29:1578-1583.
- Swinehart J. The Beer-Lambert law. J Chem Educ. 1962;39(7):333.
- Chen DS, Sing RK, Haghighi K, Nelson P. Finite element analysis of temperature distribution in micro-wave cylindrical potato tissues. J Food Engineering. 1993;18:351-368. doi: 10.1016/0260-8774(93)90052-L.
- Lin YE, Anantheswaran RC, Puri VM. Finite elment analysis of microwave heating of solid foods. J Food Engineering. 1995;25:85-112. doi: 10.1016/0260-8774(94)00008-W.
- Jansen W, Wekken B. Modeling of dielectrically assisted drying. J Microwave Power Electromagnetic Energy. 1991;26:227-236.
- Thomas HR, King SD. Couplet heat and mass transfer in unsaturated soil. A potentially -Based solution. Int J Numerical Analytical Methods Geomechanics. 1992;16:757-773.
- Ozilgen M, Heil JR. Mathematical modeling of transient heat and mass transport in a backing biscuit. J Food Proc Pres. 1994;18:133-148.
- Wang N, Brennan JG. A mathematical model of simultaneous heat and moisture transfer during drying of potato. J Food Engineering. 1995;24:47-60. doi: 10.1016/0260-8774(94)P1607-Y.
- Chen P, Pei DCT. A mathematical model for drying processes. Int J. Heat and Mass Transfer. 1989;32(2):297-310.
- King CJ. Freeze drying of foods. Butterworth, London: CRC Press; 1971. p.86.
- Chen P, Pei DCT. A mathematical model for drying processes. Int J Heat and Mass Transfer. 1989;32(2):297-310.
- Berger D, Pei DCT. Drying of hygroscopic capillary porous solids - A theoretical approach. Int J Heat and Mass Transfer. 1973;16:293-302. doi: 10.1016/0017-9310(73)90058-6.
- Jansen W, Wekken B. Modelling of dielectric assisted drying. J Microwave Power Electromagnetic Energy. 1991;26:227-236. doi: 10.1080/08327823.1991.11688161.
- Lal R, Shukla MK. Principles of soil physics. In: Basel NY, editor. MarcelDekker Inc; 2004. p.717.
- Philip JR, Vries DA. Moisture movement in porous materials under temperature gradients. Thans Am Geophys Union. 1957;38:222-232. doi: 10.1029/TR038i002p00222.
- Raudkivi AJ, Van U`n N. Soil moisture movement by temperature gradient. J Geotechnical Engineering Division. 1976;102:1225-1244.
- Thomas HR, King SD. Couplet heat and mass transfer in unsaturated soil. A potentially - Based solution. Int J Numerical Analytical Methods Geomechanics. 1992;16;757-773.
- Majorata CE, Gawin G, PesaventoF,Schrefler ВA. The sixth international conference on computational structures technology. The third international conference on engineering computational technology. Civil-Comp press and imprint of Civil-Comp Ltd. Stirling, Scotlant. Czech Republic, Prague. 2002;4(6):30.
- Lepers B, Putranto A, Umminger M, Link G, Jelonnek J. A drying and thermoelastic model for fast mi-crowave heating of concrete. Frontiers in Heat and Mass Transfer (FHMT). 2014;5(13):1-11.
- Ong KCG, Akbarnezhad A. Thermal stresses in the microwave heating of concrete. Proceedings of the 31st Conference on Our World in Concrete & Structures. Thailand, Singapore. 2006;15.
- Like Q, Young L, Jun D, Pengfei T. Thermal stress distribution and evolution of concrete particles under microwave irradiation. Journal of Engineering Sciences and Technology Review. 2016;9(3):148-154.
- Sungsoontorn S, Rattanadecho P, Pakdee W. One-dimensional model of heat and mass transports and pressure built up in unsaturated porous materials subjected to microwave energy. Drying Technology. 2011;29(2):189-204. doi: 10.1080/07373937.2010.483029.
- Zhu H, Gulati T, Datta AK, Huang K. Microwave drying of spheres: Coupled electromagnetics-multiphase transport modeling with experimentation. Part I: Model development and experimental methodology. Food Bioprod.Process. 2015;96:314-325. doi: 10.1016/j.fbp.2015.08.001.
- Gulati T, Zhu H, Datta AK. Coupled electromagnetics, multiphase transport and large deformation model for microwave drying. Chem Eng Sci. 2016;156:206-228. doi: 10.1016/j.ces.2016.09.004.
- Kumar C, Joardder MUH, Farrell TW, Karim MA. Investigation of Intermittent Microwave Convective Drying (IMCD) of food materials by a coupled 3D electromagnetics and multiphase model. Dry Technol. 2018;36:736-750. doi: 10.1080/07373937.2017.1354874.
- Teleken JT, Quadri MB, Antonio PN, Oliveira APN, Laurindo JB, Datta AK, Carciofi BAM. Mechanistic understanding of microwave-vacuum drying of non-deformable porous media. Dry Technol. 2021;39(7):850-867. doi: 10.1080/07373937.2020.1728303.
- Alpert Y, Jerby E. Coupled thermal-electromagnetic model for microwave heating of Ttemperature-dependent dielectric media. IEEE Transactions on Plasma Science. 1999;27(2):555-562. doi: 10.1109/27.772285.
- Hachkevych OR, Terlets’kyi RF, Holubets’ TV. Calculation of effective electrophysical characteristics of moitened porous materials. Journ of Math Sci. 2010;168(5):699-711. doi: 10.1007/s10958-010-0020-0.
- Howes AH, Whitaker S. The spatial averaging theorem revisited. Chemical Engineering Science. 1980;23(12):1613-1623.
- Chen P, Pei DCTA mathematical model for drying processes. Int J Heat and Mass Transfer. 1989;32(2)2:97-310.
- Berger D, Pei DCT. Drying of hygroscopic capillary porous solids – A theoretical approach. Int J Heat and Mass Transfer. 1973;16:293-302. doi: 10.1016/0017-9310(73)90058-6.
- Bird RB, Stewart WE, Lightfoot EN. Transport phenomena (Second Edition). New York-Toronto: Jon Wiley & Sons, inc; 2002. p.928.
- Hassanizadeh M, Gray WG. General conservation equations for multi-phase systems: 1. Averaging procedure. Advanced in Water Resources. 1979;2:131-141. doi: 10.1016/0309-1708(79)90025-3. doi: 10.1016/0309-1708(79)90025-3.
- Hassanizadeh M, Gray WG. General conservation equations for multi-phase systems: 2. Mass, momentuma, energy and entropy equations. 1970;2:191-203. doi: 10.1016/0309-1708(79)90035-6.
- Hassanizadeh M, Gray WG. General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. 1980;3:25-40. doi: 10.1016/0309-1708(80)90016-0.
- Нигматулин РИ. Основы механики гетерогенных сред. M: Наука; 1978. p.336.
- Eringen AC. Mechanics of continua. New-York: J. Wiley & Sons; 1962. p.608.
- .R. Hachkevych, R.F. Terletskyi, T.L. Kurnytskyi. Modeling and Optimization in Thermomechanics of Electrically Conductive Inhomogeneous Bodies. In: Ya.Y. Burak, R.M. Kushnir, editors. OLviv: 'Spolom'. 2007; 300(1,2): 184.
- Datta AK. Porous media approaches to studying simultaneous heat and mass transfer in food processes Part I - Problem formulations. Journ of food enginireeng. 2007;80:80-95. doi: 10.1016/j.jfoodeng.2006.05.013.
- Datta AK. Porous media approaches to studying simultaneous heat and mass transfer in food processes Part II – Property data and representative results. Journ of food enginireeng. 2007;80:96-110
- Holubets TV, Terletskiy RF, Yuzevych VM. The analytical expressions to describe wave propagation and heat release during microwave treatment of porous inhomogeneous plate based on the w.k.b. solution model. Advances in Materials Science. 2011;1:69-81. doi: 10.2478/adms-2023-0005.
- Landau LD, Lifshitz EM. Electrodynamics of continuous media. Moscow: Nauka. 1982;632.
- Orfanidis SJ. Electromagnetic waves and antennas. Rutgers University. 2004;1413.