Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Simulations of Galaxy Formation and Comparison with Observations

General Science    Start Submission

Diriba Gonfa Tolasa*

Volume6-Issue6
Dates: Received: 2025-05-20 | Accepted: 2025-06-06 | Published: 2025-06-07
Pages: 570-579

Abstract

Understanding the formation and evolution of galaxies is a fundamental challenge in astrophysics, necessitating a comprehensive comparison between theoretical models and observational data. This paper reviews the critical role of numerical simulations in modeling the complex physical processes that govern galaxy formation over cosmic time. By employing advanced computational techniques, researchers can simulate the gravitational interactions of dark matter, the dynamics of baryonic matter, and the intricate feedback mechanisms that influence star formation and galaxy morphology. The theoretical foundations of galaxy formation are grounded in the Λ Cold Dark Matter (ΛCDM) cosmology, which provides a framework for understanding the initial conditions of the universe. The paper discusses the significance of initial density fluctuations, as described by the primordial power spectrum, and their evolution under gravitational collapse, leading to the formation of dark matter halos. The Press-Schechter formalism and its extensions are highlighted as essential tools for predicting halo abundance and mass distribution. In addition to dark matter dynamics, the paper delves into baryonic physics, emphasizing processes such as gas cooling, star formation, and chemical enrichment. The interplay between these processes is crucial for reproducing observed galaxy properties, and the paper outlines various hydrodynamical techniques employed in simulations, including Smoothed Particle Hydrodynamics (SPH) and Adaptive Mesh Refinement (AMR).Key simulation projects, such as the Millennium Simulation, EAGLE, Illustris, and FIRE, are systematically compared, showcasing their unique strengths and contributions to the field. The results of these simulations are juxtaposed with observational data from large surveys like the Sloan Digital Sky Survey (SDSS) and the Galaxy and Mass Assembly (GAMA) survey. The paper presents a detailed analysis of the galaxy stellar mass function, size-mass relation, and star formation main sequence, illustrating both the successes and the ongoing challenges in accurately modeling galaxy properties. Ultimately, this review underscores the importance of continued refinement in simulation methodologies and the integration of observational insights to enhance our understanding of galaxy formation and evolution. By addressing existing discrepancies and exploring future research directions, this work aims to contribute to the broader discourse on the nature of galaxies and their role in the universe.

FullText HTML FullText PDF DOI: 10.37871/jbres2112


Certificate of Publication




Copyright

© 2025 Tolasa DG, Distributed under Creative Commons CC-BY 4.0

How to cite this article

Tolasa DG. Simulations of Galaxy Formation and Comparison with Observations. J Biomed Res Environ Sci. 2025 Jun 07; 6(6): 570-579. doi: 10.37871/jbres2112, Article ID: JBRES2112, Available at: https://www.jelsciences.com/articles/ jbres2112.pdf


Subject area(s)

References


  1. York DG, Adelman J, Anderson J, Anderson SF, Annis J, Bahcall NA, Bakken JA, Barkhouser R, Bastian S, Berman E, Boroski WN, Bracker S, Briegel C, Briggs JW, Brinkmann J, Brunner R, Burles S, Carey L, Carr MA, Castander FJ, Chen B, Colestock PL, Connolly AJ, Crocker JH, Csabai I, Czarapata PC, Davis JE, Doi M, Dombeck T, Eisenstein D, Ellman N, Elms BR, Evans ML, Fan X, Federwitz GR, Fiscelli L, Friedman S, Frieman JA, Fukugita M, Gillespie B, Gunn JE, Gurbani VK, de Haas E, Haldeman M, Harris FH, Hayes J, Heckman TM, Hennessy GS, Hindsley RB, Holm S, Holmgren DJ, Huang CH, Hull C, Husby D, Ichikawa SI, Ichikawa T, Ivezić Ž, Kent S, Kim RSJ, Kinney E, Klaene M, Kleinman AN, Kleinman S, Knapp GR, Korienek J, Kron RG, Kunszt PZ, Lamb DQ, Lee B, Leger RF, Limmongkol S, Lindenmeyer C, Long DC, Loomis C, Loveday J, Lucinio R, Lupton RH, MacKinnon B, Mannery EJ, Mantsch PM, Margon B, McGehee P, McKay TA, Meiksin A, Merelli A, Monet DG, Munn JA, Narayanan VK, Nash T, Neilsen E, Neswold R, Newberg HJ, Nichol RC, Nicinski T, Nonino M, Okada N, Okamura S, Ostriker JP, Owen R, Pauls AG, Peoples J, Peterson RL, Petravick D, Pier JR, Pope A, Pordes R, Prosapio A, Rechenmacher R, Quinn TR, Richards GT, Richmond MW, Rivetta CH, Rockosi CM, Ruthmansdorfer K, Sandford D, Schlegel DJ, Schneider DP, Sekiguchi M, Sergey G, Shimasaku K, Siegmund WA, Smee S, Smith JA, Snedden S, Stone R, Stoughton C, Strauss MA, Stubbs C, SubbaRao M, Szalay AS, Szapudi I, Szokoly GP, Thakar AR, Tremonti C, Tucker DL, Uomoto A, Vanden BD, Vogeley MS, Waddell P, Wang S, Watanabe M, Weinberg DH, Yanny B, Yasuda N. SDSS collaboration. The sloan digital sky survey: Technical summary. The Astronomical Journal. 2000;120(3):1579. doi: 10.1086/301513.
  2. Baldry IK, Driver SP, Loveday J, Taylor EN, Kelvin LS, Liske J, Norberg P, Robotham ASG, Brough S, Hopkins AM, Bamford SP, Peacock JA, Bland HJ, Conselice CJ, Croom SM, Jones DH, Parkinson HR, Popescu CC, Prescott M, Sharp RG, Tuffs RJ. Galaxy and Mass Assembly (GAMA): Stellar mass functions at z¡0.06. Monthly Notices of the Royal Astronomical Society. 2011;413(2):971985. doi: 10.1111/j.1365-2966.2012.20340.x.
  3. Springel V. The cosmological simulation code GADGET-2. Monthly Notices of the Royal Astronomical Society. 2005;364(4):11051134. doi: 10.1111/j.1365-2966.2005.09655.x.
  4. Lewis A, Challinor A, Lasenby A. Efficient computation of CMB anisotropies in closed FRW models. The Astrophysical Journal. 2000;538(2):473. doi: 10.1086/309179.
  5. White SDM, Frenk CS. The hierarchical formation of galaxies and clusters of galaxies. The Astrophysical Journal. 1978;206:3143. doi: 10.1086/170483.
  6. Press WH, Schechter P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. The Astrophysical Journal. 1974;187:425438. doi: 10.1086/152650.
  7. Sheth RK, Tormen G. Large-scale bias and the peak background split. Monthly Notices of the Royal Astronomical Society. 1999;308(1):119126. doi: 10.1046/j.1365-8711.1999.02692.x.
  8. Sutherland RS, Dopita MA. Cooling functions for low-density astrophysical plasmas. The Astrophysical Journal Supplement Series. 1993;88:253327. doi: 10.1086/191823.
  9. Kennicutt RC. The global Schmidt law in star-forming galaxies. The Astrophysical Journal. 1998;498(2):541. doi: 10.1086/305588.
  10. Somerville RS, Dav R. Physical models of galaxy formation in a cosmological framework. Annual Review of Astronomy and Astrophysics. 2015;53:51113. doi: 10.1146/annurev-astro-082812-140951.
  11. Tremonti CA, Heckman TM, Kauffmann G, Brinchmann J, Charlot S, White SDM, Seibert M, Peng EW, Schlegel DJ, Uomoto A, Fukugita M, Brinkmann J. The Origin of the metallicity luminosity relation in star-forming galaxies. The Astrophysical Journal. 2004;613(2):898913. doi: 10.1086/423264.
  12. Monaghan JJ. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics. 1992;30:543574.
  13. Berger MJ, Colella P. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics. 1984;82(1):6484. doi: 10.1016/0021-9991(89)90035-1.
  14. Springel V. E pur si muove: Moving-mesh hydrodynamics with AREPO. Monthly Notices of the Royal Astronomical Society. 2010;401(2):791851.
  15. Springel V, White SDM, Jenkins A, Frenk CS, Yoshida N, Gao L, Navarro J, Thacker R, Croton D, Helly J, Peacock JA, Cole S, Thomas P, Couchman H, Evrard A, Colberg J, Pearce F. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature. 2005;435:629636. doi: 10.1038/nature03597.
  16. Schaye J, Crain RA, Bower RG, Furlong M, Schaller M, Theuns T, Dalla VC, Frenk CS, McCarthy IG, Helly JC, Jenkins A, Rosas GYM, White SDM, Baes M, Booth CM, Camps P, Navarro JF, Qu Y, Rahmati A, Sawala T, Thomas PA, Trayford J. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society. 2015;446:521554. doi: 10.1093/mnras/stu2058.
  17. Mark V, Shy G, Volker S, Paul T, Debora S, Dandan X, Greg S, Dylan N, Lars H. Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Monthly Notices of the Royal Astronomical Society. 2014;444:15181547. doi: 10.1093/mnras/stu1536.
  18. Pillepich A, Springel V, Nelson D, Genel S, Naiman J, Pakmor R, Hernquist L, Torrey P, Vogelsberger M, Weinberger R, Marinacci F. Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society. 2018;473(3):40774106. doi: 10.1093/mnras/stx2656.
  19. Philip FH, Dusan K, Jose O, Claude AF, Eliot Q, Norman M, James SB. FIRE (Feedback In Realistic Environments): Highresolution simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society. 2014;445(1): 581603. doi: 10.1093/mnras/stu1738.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search