Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

The Role of Translation Initiation Regulation in Tumorigenesis, Progression and Drug Resistance

Medicine Group    Start Submission

Shi-Lin Lin, Yue Wang, Jia Fan, Chao Gao* and Ai-Wu Ke*

Volume6-Issue5
Dates: Received: 2025-03-28 | Accepted: 2025-05-15 | Published: 2025-05-17
Pages: 465-491

Abstract

The initiation of mRNA translation plays a pivotal role in gene expression and has profound implications for tumorigenesis, tumor progression, and drug resistance. eIF4F complex, as an important part of the classical translation initiation mechanism, has been widely studied in tumors, and tumor cells use it to enhance overall protein synthesis while while targeting the translation of oncogenes. In addition, the roles of a number of other translation initiation factors and translation initiation-related pathways (such as mTOR) in tumorigenesis and development have also been gradually discovered. Previous reports have shown that dysregulated translation initiation could enable tumor cells to thrive in challenging environments, such as hypoxia. These intricate processes are essential for adapting to complex circumstances and transforming the tumor immune microenvironment. This transformation equips cancer cells with the ability to evade detection by the immune system. Moreover, the dysfunction of translation initiation may cause drug resistance among tumors. This disruption increases the production of specific proteins that act as essential support systems for cancer cells, which enables them to withstand the adverse effects of various cancer treatments and increases the challenges in combating the disease. In this review, we examine the significance of translation initiation regulation in tumorigenesis and cancer development and highlight how abnormalities in translation initiation can cause drug resistance in tumors. We also evaluate the feasibility of developing combination therapies that target translation initiation in conjunction with other anticancer agents.


FullText HTML FullText PDF DOI: 10.37871/jbres2104


Certificate of Publication




Copyright

© 2025 Shi-Lin L, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Shi-Lin L, Wang Y, Fan J, Gao C, Ai-Wu K. The Role of Translation Initiation Regulation in Tumorigenesis, Progression and Drug Resistance. J Biomed Res Environ Sci. 2025 May 17; 6(5): 465-491. doi: 10.37871/jbres2104, Article ID: JBRES2104, Available at: https://www.jelsciences.com/articles/jbres2104.pdf


Subject area(s)

References


  1. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature. 2011 May 19;473(7347):337-42. doi: 10.1038/nature10098. Erratum in: Nature. 2013 Mar 07;495(7439):126-7. doi: 10.1038/nature11848. PMID: 21593866
  2. Gray NK, Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399-458. doi: 10.1146/annurev.cellbio.14.1.399. PMID: 9891789.
  3. Jia X, He X, Huang C, Li J, Dong Z, Liu K. Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther. 2024 Feb 23;9(1):44. doi: 10.1038/s41392-024-01749-9. PMID: 38388452; PMCID: PMC10884018.
  4. Song P, Yang F, Jin H, Wang X. The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther. 2021 Feb 18;6(1):68. doi: 10.1038/s41392-020-00444-9. PMID: 33597534; PMCID: PMC7889628.
  5. Truitt ML, Ruggero D. New frontiers in translational control of the cancer genome. Nat Rev Cancer. 2016 Apr 26;16(5):288-304. doi: 10.1038/nrc.2016.27. Erratum in: Nat Rev Cancer. 2017 Apr 24;17(5):332. doi: 10.1038/nrc.2017.30. PMID: 27112207; PMCID: PMC5491099.
  6. Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019 Dec;59:92-111. doi: 10.1016/j.semcancer.2019.07.003. Epub 2019 Aug 10. PMID: 31408724.
  7. Malka-Mahieu H, Newman M, Désaubry L, Robert C, Vagner S. Molecular Pathways: The eIF4F Translation Initiation Complex-New Opportunities for Cancer Treatment. Clin Cancer Res. 2017 Jan 1;23(1):21-25. doi: 10.1158/1078-0432.CCR-14-2362. Epub 2016 Oct 27. PMID: 27789529.
  8. Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019 Jul 5;12(1):71. doi: 10.1186/s13045-019-0754-1. PMID: 31277692; PMCID: PMC6612215.
  9. Petrychenko V, Yi SH, Liedtke D, Peng BZ, Rodnina MV, Fischer N. Structural basis for translational control by the human 48S initiation complex. Nat Struct Mol Biol. 2025 Jan;32(1):62-72. doi: 10.1038/s41594-024-01378-4. Epub 2024 Sep 17. PMID: 39289545; PMCID: PMC11746136.
  10. Brito Querido J, Sokabe M, Kraatz S, Gordiyenko Y, Skehel JM, Fraser CS, Ramakrishnan V. Structure of a human 48S translational initiation complex. Science. 2020 Sep 4;369(6508):1220-1227. doi: 10.1126/science.aba4904. PMID: 32883864; PMCID: PMC7116333.
  11. She R, Luo J, Weissman JS. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Res. 2023 Jul 7;51(12):6355-6369. doi: 10.1093/nar/gkad329. PMID: 37144468; PMCID: PMC10325891.
  12. Lai WC, Zhu M, Belinite M, Ballard G, Mathews DH, Ermolenko DN. Intrinsically Unstructured Sequences in the mRNA 3' UTR Reduce the Ability of Poly(A) Tail to Enhance Translation. J Mol Biol. 2022 Dec 30;434(24):167877. doi: 10.1016/j.jmb.2022.167877. Epub 2022 Nov 8. PMID: 36368412; PMCID: PMC9750134.
  13. Wang J, Shin BS, Alvarado C, Kim JR, Bohlen J, Dever TE, Puglisi JD. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell. 2022 Nov 23;185(24):4474-4487.e17. doi: 10.1016/j.cell.2022.10.005. Epub 2022 Nov 4. PMID: 36334590; PMCID: PMC9691599.
  14. Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhäuser N, Marchisio PC, Biffo S. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature. 2003 Dec 4;426(6966):579-84. doi: 10.1038/nature02160. PMID: 14654845.
  15. Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature. 2000 Jan 20;403(6767):332-5. doi: 10.1038/35002118. PMID: 10659855.
  16. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27. doi: 10.1038/nrm2838. PMID: 20094052; PMCID: PMC4461372.
  17. Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci. 2017 Mar 19;372(1716):20160177. doi: 10.1098/rstb.2016.0177. PMID: 28138065; PMCID: PMC5311923.
  18. Roiuk M, Neff M, Teleman AA. eIF4E-independent translation is largely eIF3d-dependent. Nat Commun. 2024 Aug 6;15(1):6692. doi: 10.1038/s41467-024-51027-z. PMID: 39107322; PMCID: PMC11303786.
  19. Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol. 2024 Mar;25(3):168-186. doi: 10.1038/s41580-023-00624-9. Epub 2023 Dec 5. PMID: 38052923.
  20. Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol. 2022 Nov;86(Pt 3):151-165. doi: 10.1016/j.semcancer.2022.04.006. Epub 2022 Apr 26. PMID: 35487398.
  21. Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci. 2024 Oct 9;25(19):10835. doi: 10.3390/ijms251910835. PMID: 39409166; PMCID: PMC11477148.
  22. Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem. 2023 Sep 28;66(18):12678-12696. doi: 10.1021/acs.jmedchem.3c00636. Epub 2023 Sep 19. PMID: 37725577.
  23. Liu X, Vaidya AM, Sun D, Zhang Y, Ayat N, Schilb A, Lu ZR. Role of eIF4E on epithelial-mesenchymal transition, invasion, and chemoresistance of prostate cancer cells. Cancer Commun (Lond). 2020 Mar;40(2-3):126-131. doi: 10.1002/cac2.12011. Epub 2020 Mar 18. PMID: 32189455; PMCID: PMC7144414.
  24. Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM, Seo Y, Barna M, Ruggero D. Differential Requirements for eIF4E Dose in Normal Development and Cancer. Cell. 2015 Jul 2;162(1):59-71. doi: 10.1016/j.cell.2015.05.049. Epub 2015 Jun 18. PMID: 26095252; PMCID: PMC4491046.
  25. Brina D, Ponzoni A, Troiani M, Calì B, Pasquini E, Attanasio G, Mosole S, Mirenda M, D'Ambrosio M, Colucci M, Guccini I, Revandkar A, Alajati A, Tebaldi T, Donzel D, Lauria F, Parhizgari N, Valdata A, Maddalena M, Calcinotto A, Bolis M, Rinaldi A, Barry S, Rüschoff JH, Sabbadin M, Sumanasuriya S, Crespo M, Sharp A, Yuan W, Grinu M, Boyle A, Miller C, Trotman L, Delaleu N, Fassan M, Moch H, Viero G, de Bono J, Alimonti A. The Akt/mTOR and MNK/eIF4E pathways rewire the prostate cancer translatome to secrete HGF, SPP1 and BGN and recruit suppressive myeloid cells. Nat Cancer. 2023 Aug;4(8):1102-1121. doi: 10.1038/s43018-023-00594-z. Epub 2023 Jul 17. PMID: 37460872; PMCID: PMC11331482.
  26. Yang M, Lu Y, Piao W, Jin H. The Translational Regulation in mTOR Pathway. Biomolecules. 2022 Jun 8;12(6):802. doi: 10.3390/biom12060802. PMID: 35740927; PMCID: PMC9221026.
  27. Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 2023 Oct 2;8(1):375. doi: 10.1038/s41392-023-01608-z. PMID: 37779156; PMCID: PMC10543444.
  28. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol. 2004 Aug;24(15):6539-49. doi: 10.1128/MCB.24.15.6539-6549.2004. PMID: 15254222; PMCID: PMC444855.
  29. Huang XB, Yang CM, Han QM, Ye XJ, Lei W, Qian WB. MNK1 inhibitor CGP57380 overcomes mTOR inhibitor-induced activation of eIF4E: the mechanism of synergic killing of human T-ALL cells. Acta Pharmacol Sin. 2018 Dec;39(12):1894-1901. doi: 10.1038/s41401-018-0161-0. Epub 2018 Oct 8. PMID: 30297804; PMCID: PMC6289382.
  30. Robichaud N, Hsu BE, Istomine R, Alvarez F, Blagih J, Ma EH, Morales SV, Dai DL, Li G, Souleimanova M, Guo Q, Del Rincon SV, Miller WH Jr, Ramón Y Cajal S, Park M, Jones RG, Piccirillo CA, Siegel PM, Sonenberg N. Translational control in the tumor microenvironment promotes lung metastasis: Phosphorylation of eIF4E in neutrophils. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2202-E2209. doi: 10.1073/pnas.1717439115. Epub 2018 Feb 20. PMID: 29463754; PMCID: PMC5877985.
  31. Li M, Lou L, Ren L, Li C, Han R, Jiang J, Qi L, Jiang Y. EIF4G2 Promotes Hepatocellular Carcinoma Progression via IRES-dependent PLEKHA1 Translation Regulation. J Proteome Res. 2024 Oct 4;23(10):4553-4566. doi: 10.1021/acs.jproteome.4c00457. Epub 2024 Aug 30. PMID: 39213495.
  32. Weber R, Kleemann L, Hirschberg I, Chung MY, Valkov E, Igreja C. DAP5 enables main ORF translation on mRNAs with structured and uORF-containing 5' leaders. Nat Commun. 2022 Dec 6;13(1):7510. doi: 10.1038/s41467-022-35019-5. PMID: 36473845; PMCID: PMC9726905.
  33. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 2006 Oct 20;314(5798):467-71. doi: 10.1126/science.1130276. PMID: 17053147.
  34. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005 Nov 18;123(4):569-80. doi: 10.1016/j.cell.2005.10.024. PMID: 16286006.
  35. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012 Jun;142(7):1504-15.e3. doi: 10.1053/j.gastro.2012.02.050. Epub 2012 Mar 6. PMID: 22406476; PMCID: PMC3682211.
  36. Quintas A, Harvey RF, Horvilleur E, Garland GD, Schmidt T, Kalmar L, Dezi V, Marini A, Fulton AM, Pöyry TAA, Cole CH, Turner M, Sawarkar R, Chapman MA, Bushell M, Willis AE. Eukaryotic initiation factor 4B is a multi-functional RNA binding protein that regulates histone mRNAs. Nucleic Acids Res. 2024 Oct 28;52(19):12039-12054. doi: 10.1093/nar/gkae767. PMID: 39225047; PMCID: PMC11514447.
  37. Wu D, Matsushita K, Matsubara H, Nomura F, Tomonaga T. An alternative splicing isoform of eukaryotic initiation factor 4H promotes tumorigenesis in vivo and is a potential therapeutic target for human cancer. Int J Cancer. 2011 Mar 1;128(5):1018-30. doi: 10.1002/ijc.25419. PMID: 20473909.
  38. Chen Y, Zhou Y, Qiu S, Wang K, Liu S, Peng XX, Li J, Tan EM, Zhang JY. Autoantibodies to tumor-associated antigens combined with abnormal alpha-fetoprotein enhance immunodiagnosis of hepatocellular carcinoma. Cancer Lett. 2010 Mar 1;289(1):32-9. doi: 10.1016/j.canlet.2009.07.016. Epub 2009 Aug 15. PMID: 19683863; PMCID: PMC2823929.
  39. Misra J, Carlson KR, Spandau DF, Wek RC. Multiple mechanisms activate GCN2 eIF2 kinase in response to diverse stress conditions. Nucleic Acids Res. 2024 Feb 28;52(4):1830-1846. doi: 10.1093/nar/gkae006. PMID: 38281137; PMCID: PMC10899773.
  40. Ghaddar N, Wang S, Woodvine B, Krishnamoorthy J, van Hoef V, Darini C, Kazimierczak U, Ah-Son N, Popper H, Johnson M, Officer L, Teodósio A, Broggini M, Mann KK, Hatzoglou M, Topisirovic I, Larsson O, Le Quesne J, Koromilas AE. The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nat Commun. 2021 Jul 30;12(1):4651. doi: 10.1038/s41467-021-24661-0. PMID: 34330898; PMCID: PMC8324901.
  41. Lee S, Jee HY, Lee YG, Shin JI, Jeon YJ, Kim JB, Seo HE, Lee JY, Lee K. PKR-Mediated Phosphorylation of eIF2a and CHK1 Is Associated with Doxorubicin-Mediated Apoptosis in HCC1143 Triple-Negative Breast Cancer Cells. Int J Mol Sci. 2022 Dec 14;23(24):15872. doi: 10.3390/ijms232415872. PMID: 36555509; PMCID: PMC9779813.
  42. Gomes-Duarte A, Lacerda R, Menezes J, Romão L. eIF3: a factor for human health and disease. RNA Biol. 2018 Jan 2;15(1):26-34. doi: 10.1080/15476286.2017.1391437. Epub 2017 Nov 13. PMID: 29099306; PMCID: PMC5785978.
  43. Singh CR, Watanabe R, Zhou D, Jennings MD, Fukao A, Lee B, Ikeda Y, Chiorini JA, Campbell SG, Ashe MP, Fujiwara T, Wek RC, Pavitt GD, Asano K. Mechanisms of translational regulation by a human eIF5-mimic protein. Nucleic Acids Res. 2011 Oct;39(19):8314-28. doi: 10.1093/nar/gkr339. Epub 2011 Jul 10. PMID: 21745818; PMCID: PMC3201852.
  44. Sato K, Masuda T, Hu Q, Tobo T, Gillaspie S, Niida A, Thornton M, Kuroda Y, Eguchi H, Nakagawa T, Asano K, Mimori K. Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer. EBioMedicine. 2019 Jun;44:387-402. doi: 10.1016/j.ebiom.2019.05.058. Epub 2019 Jun 4. PMID: 31175057; PMCID: PMC6606960.
  45. Miluzio A, Beugnet A, Grosso S, Brina D, Mancino M, Campaner S, Amati B, de Marco A, Biffo S. Impairment of cytoplasmic eIF6 activity restricts lymphomagenesis and tumor progression without affecting normal growth. Cancer Cell. 2011 Jun 14;19(6):765-75. doi: 10.1016/j.ccr.2011.04.018. PMID: 21665150.
  46. Gao Y, Yuan L, Zeng J, Li F, Li X, Tan F, Liu X, Wan H, Kui X, Liu X, Ke C, Pei Z. eIF6 is potential diagnostic and prognostic biomarker that associated with 18F-FDG PET/CT features and immune signatures in esophageal carcinoma. J Transl Med. 2022 Jul 6;20(1):303. doi: 10.1186/s12967-022-03503-7. PMID: 35794622; PMCID: PMC9258187.
  47. Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther. 2023 Jan 9;8(1):15. doi: 10.1038/s41392-022-01285-4. PMID: 36617563; PMCID: PMC9826790.
  48. Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res. 2022 Jul 5;82(13):2344-2353. doi: 10.1158/0008-5472.CAN-21-4087. PMID: 35303060; PMCID: PMC9256764.
  49. Cui L, Zheng J, Lin Y, Lin P, Lu Y, Zheng Y, Guo B, Zhao X. Decoding the ribosome's hidden language: rRNA modifications as key players in cancer dynamics and targeted therapies. Clin Transl Med. 2024 May;14(5):e1705. doi: 10.1002/ctm2.1705. PMID: 38797935; PMCID: PMC11128715.
  50. Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002 Apr 19;109(2):145-8. doi: 10.1016/s0092-8674(02)00718-3. PMID: 12007400.
  51. Pauli C, Liu Y, Rohde C, Cui C, Fijalkowska D, Gerloff D, Walter C, Krijgsveld J, Dugas M, Edemir B, Pabst C, Müller LP, Zhou F, Müller-Tidow C. Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acute myeloid leukemia cell proliferation. Blood. 2020 Jun 4;135(23):2059-2070. doi: 10.1182/blood.2019004121. PMID: 32097467.
  52. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002 Oct 10;419(6907):624-9. doi: 10.1038/nature01075. PMID: 12374981.
  53. Yi Y, Li Y, Meng Q, Li Q, Li F, Lu B, Shen J, Fazli L, Zhao D, Li C, Jiang W, Wang R, Liu Q, Szczepanski A, Li Q, Qin W, Weiner AB, Lotan TL, Ji Z, Kalantry S, Wang L, Schaeffer EM, Niu H, Dong X, Zhao W, Chen K, Cao Q. A PRC2-independent function for EZH2 in regulating rRNA 2'-O methylation and IRES-dependent translation. Nat Cell Biol. 2021 Apr;23(4):341-354. doi: 10.1038/s41556-021-00653-6. Epub 2021 Apr 1. PMID: 33795875; PMCID: PMC8162121.
  54. Dai Z, Zhu W, Hou Y, Zhang X, Ren X, Lei K, Liao J, Liu H, Chen Z, Peng S, Li S, Lin S, Kuang M. METTL5-mediated 18S rRNA m6A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Mol Ther. 2023 Nov 1;31(11):3225-3242. doi: 10.1016/j.ymthe.2023.09.014. Epub 2023 Sep 21. PMID: 37735874; PMCID: PMC10638452.
  55. Peng H, Chen B, Wei W, Guo S, Han H, Yang C, Ma J, Wang L, Peng S, Kuang M, Lin S. N6-methyladenosine (m6A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nat Metab. 2022 Aug;4(8):1041-1054. doi: 10.1038/s42255-022-00622-9. Epub 2022 Aug 23. PMID: 35999469.
  56. Chen B, Huang Y, He S, Yu P, Wu L, Peng H. N6-methyladenosine modification in 18S rRNA promotes tumorigenesis and chemoresistance via HSF4b/HSP90B1/mutant p53 axis. Cell Chem Biol. 2023 Feb 16;30(2):144-158.e10. doi: 10.1016/j.chembiol.2023.01.006. PMID: 36800991.
  57. Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther. 2021 Aug 30;6(1):323. doi: 10.1038/s41392-021-00728-8. PMID: 34462428; PMCID: PMC8405630.
  58. Gao Y, Wang H. Ribosome heterogeneity in development and disease. Front Cell Dev Biol. 2024 Jul 17;12:1414269. doi: 10.3389/fcell.2024.1414269. PMID: 39086661; PMCID: PMC11288964.
  59. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016 Oct;17(10):1374-1395. doi: 10.15252/embr.201642195. Epub 2016 Sep 14. PMID: 27629041; PMCID: PMC5048378.
  60. Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science. 2020 Apr 24;368(6489):eaat5314. doi: 10.1126/science.aat5314. PMID: 32327570; PMCID: PMC8997189.
  61. Dever TE, Ivanov IP, Hinnebusch AG. Translational regulation by uORFs and start codon selection stringency. Genes Dev. 2023 Jun 1;37(11-12):474-489. doi: 10.1101/gad.350752.123. Epub 2023 Jul 11. PMID: 37433636; PMCID: PMC10393191.
  62. Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, Zhang X, Hess ME, Brüning JC, Qian SB. N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response. Mol Cell. 2018 Feb 15;69(4):636-647.e7. doi: 10.1016/j.molcel.2018.01.019. Epub 2018 Feb 8. PMID: 29429926; PMCID: PMC5816726.
  63. Bai X, Ni J, Beretov J, Wasinger VC, Wang S, Zhu Y, Graham P, Li Y. Activation of the eIF2α/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis. Redox Biol. 2021 Jul;43:101993. doi: 10.1016/j.redox.2021.101993. Epub 2021 Apr 28. PMID: 33946018; PMCID: PMC8111851.
  64. Tameire F, Verginadis II, Leli NM, Polte C, Conn CS, Ojha R, Salas Salinas C, Chinga F, Monroy AM, Fu W, Wang P, Kossenkov A, Ye J, Amaravadi RK, Ignatova Z, Fuchs SY, Diehl JA, Ruggero D, Koumenis C. ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nat Cell Biol. 2019 Jul;21(7):889-899. doi: 10.1038/s41556-019-0347-9. Epub 2019 Jul 1. Erratum in: Nat Cell Biol. 2019 Aug;21(8):1052. doi: 10.1038/s41556-019-0370-x. PMID: 31263264; PMCID: PMC6608727.
  65. Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018 Mar;19(3):158-174. doi: 10.1038/nrm.2017.103. Epub 2017 Nov 22. Erratum in: Nat Rev Mol Cell Biol. 2018 Oct;19(10):673. doi: 10.1038/s41580-018-0055-5. PMID: 29165424; PMCID: PMC5820134.
  66. Wiegering A, Uthe FW, Jamieson T, Ruoss Y, Hüttenrauch M, Küspert M, Pfann C, Nixon C, Herold S, Walz S, Taranets L, Germer CT, Rosenwald A, Sansom OJ, Eilers M. Targeting Translation Initiation Bypasses Signaling Crosstalk Mechanisms That Maintain High MYC Levels in Colorectal Cancer. Cancer Discov. 2015 Jul;5(7):768-781. doi: 10.1158/2159-8290.CD-14-1040. Epub 2015 May 1. Erratum in: Cancer Discov. 2025 Mar 3;15(3):656. doi: 10.1158/2159-8290.CD-25-0054. PMID: 25934076; PMCID: PMC5166973.
  67. He F, Zhang P, Liu J, Wang R, Kaufman RJ, Yaden BC, Karin M. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J Hepatol. 2023 Aug;79(2):362-377. doi: 10.1016/j.jhep.2023.03.016. Epub 2023 Mar 28. PMID: 36996941; PMCID: PMC11332364.
  68. Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nat Cancer. 2023 Aug;4(8):1063-1082. doi: 10.1038/s43018-023-00595-y. Epub 2023 Aug 3. PMID: 37537300; PMCID: PMC7615147.
  69. Lee LJ, Papadopoli D, Jewer M, Del Rincon S, Topisirovic I, Lawrence MG, Postovit LM. Cancer Plasticity: The Role of mRNA Translation. Trends Cancer. 2021 Feb;7(2):134-145. doi: 10.1016/j.trecan.2020.09.005. Epub 2020 Oct 13. PMID: 33067172; PMCID: PMC8023421.
  70. Fontana R, Mestre-Farrera A, Yang J. Update on Epithelial-Mesenchymal Plasticity in Cancer Progression. Annu Rev Pathol. 2024 Jan 24;19:133-156. doi: 10.1146/annurev-pathmechdis-051222-122423. Epub 2023 Sep 27. PMID: 37758242; PMCID: PMC10872224.
  71. Evdokimova V, Tognon CE, Sorensen PH. On translational regulation and EMT. Semin Cancer Biol. 2012 Oct;22(5-6):437-45. doi: 10.1016/j.semcancer.2012.04.007. Epub 2012 Apr 23. PMID: 22554796.
  72. Morin C, Moyret-Lalle C, Mertani HC, Diaz JJ, Marcel V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim Biophys Acta Rev Cancer. 2022 May;1877(3):188718. doi: 10.1016/j.bbcan.2022.188718. Epub 2022 Mar 15. PMID: 35304296.
  73. Robichaud N, del Rincon SV, Huor B, Alain T, Petruccelli LA, Hearnden J, Goncalves C, Grotegut S, Spruck CH, Furic L, Larsson O, Muller WJ, Miller WH, Sonenberg N. Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene. 2015 Apr 16;34(16):2032-42. doi: 10.1038/onc.2014.146. Epub 2014 Jun 9. PMID: 24909168; PMCID: PMC4978545.
  74. Kelly NJ, Varga JFA, Specker EJ, Romeo CM, Coomber BL, Uniacke J. Hypoxia activates cadherin-22 synthesis via eIF4E2 to drive cancer cell migration, invasion and adhesion. Oncogene. 2018 Feb 1;37(5):651-662. doi: 10.1038/onc.2017.372. Epub 2017 Oct 9. PMID: 28991229; PMCID: PMC5770212.
  75. Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019 Dec;19(12):716-732. doi: 10.1038/s41568-019-0213-x. Epub 2019 Oct 30. PMID: 31666716; PMCID: PMC7055151.
  76. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420-8. doi: 10.1172/JCI39104. Erratum in: J Clin Invest. 2010 May 3;120(5):1786. PMID: 19487818; PMCID: PMC2689101.
  77. Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JH, Proia TA, Jin DX, Reinhardt F, Ploegh HL, Wang Q, Gupta PB. Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 2014 Jun;4(6):702-15. doi: 10.1158/2159-8290.CD-13-0945. Epub 2014 Apr 4. PMID: 24705811.
  78. Tang DJ, Dong SS, Ma NF, Xie D, Chen L, Fu L, Lau SH, Li Y, Li Y, Guan XY. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology. 2010 Apr;51(4):1255-63. doi: 10.1002/hep.23451. PMID: 20112425.
  79. Zhu W, Cai MY, Tong ZT, Dong SS, Mai SJ, Liao YJ, Bian XW, Lin MC, Kung HF, Zeng YX, Guan XY, Xie D. Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymaltransition. Gut. 2012 Apr;61(4):562-75. doi: 10.1136/gutjnl-2011-300207. Epub 2011 Aug 3. PMID: 21813470.
  80. Farache D, Liu L, Lee ASY. Eukaryotic Initiation Factor 5A2 Regulates Expression of Antiviral Genes. J Mol Biol. 2022 May 30;434(10):167564. doi: 10.1016/j.jmb.2022.167564. Epub 2022 Mar 28. PMID: 35358571; PMCID: PMC11906106.
  81. Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip Rev RNA. 2018 Mar;9(2). doi: 10.1002/wrna.1458. Epub 2017 Nov 29. PMID: 29193740.
  82. Bera A, Lewis SM. Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. Int J Mol Sci. 2020 Jun 7;21(11):4075. doi: 10.3390/ijms21114075. PMID: 32517298; PMCID: PMC7312463.
  83. Shu F, Liu H, Chen X, Liu Y, Zhou J, Tang L, Cao W, Yang S, Long Y, Li R, Wang H, Wang H, Jiang G. m6A Modification Promotes EMT and Metastasis of Castration-Resistant Prostate Cancer by Upregulating NFIB. Cancer Res. 2024 Jun 14;84(12):1947-1962. doi: 10.1158/0008-5472.CAN-23-1954. PMID: 38536119.
  84. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5' UTR m(6)A Promotes Cap-Independent Translation. Cell. 2015 Nov 5;163(4):999-1010. doi: 10.1016/j.cell.2015.10.012. Epub 2015 Oct 22. PMID: 26593424; PMCID: PMC4695625.
  85. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 2015 Oct 22;526(7574):591-4. doi: 10.1038/nature15377. Epub 2015 Oct 12. PMID: 26458103; PMCID: PMC4851248.
  86. Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol. 2021 Oct;22(10):671-690. doi: 10.1038/s41580-021-00386-2. Epub 2021 Jul 16. PMID: 34272502.
  87. Nguyen HG, Conn CS, Kye Y, Xue L, Forester CM, Cowan JE, Hsieh AC, Cunningham JT, Truillet C, Tameire F, Evans MJ, Evans CP, Yang JC, Hann B, Koumenis C, Walter P, Carroll PR, Ruggero D. Development of a stress response therapy targeting aggressive prostate cancer. Sci Transl Med. 2018 May 2;10(439):eaar2036. doi: 10.1126/scitranslmed.aar2036. PMID: 29720449; PMCID: PMC6045425.
  88. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m⁶A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2047-56. doi: 10.1073/pnas.1602883113. Epub 2016 Mar 21. PMID: 27001847; PMCID: PMC4833258.
  89. Jewer M, Lee L, Leibovitch M, Zhang G, Liu J, Findlay SD, Vincent KM, Tandoc K, Dieters-Castator D, Quail DF, Dutta I, Coatham M, Xu Z, Puri A, Guan BJ, Hatzoglou M, Brumwell A, Uniacke J, Patsis C, Koromilas A, Schueler J, Siegers GM, Topisirovic I, Postovit LM. Translational control of breast cancer plasticity. Nat Commun. 2020 May 19;11(1):2498. doi: 10.1038/s41467-020-16352-z. PMID: 32427827; PMCID: PMC7237473.
  90. Zhou F, Aroua N, Liu Y, Rohde C, Cheng J, Wirth AK, Fijalkowska D, Göllner S, Lotze M, Yun H, Yu X, Pabst C, Sauer T, Oellerich T, Serve H, Röllig C, Bornhäuser M, Thiede C, Baldus C, Frye M, Raffel S, Krijgsveld J, Jeremias I, Beckmann R, Trumpp A, Müller-Tidow C. A Dynamic rRNA Ribomethylome Drives Stemness in Acute Myeloid Leukemia. Cancer Discov. 2023 Feb 6;13(2):332-347. doi: 10.1158/2159-8290.CD-22-0210. PMID: 36259929; PMCID: PMC9900322.
  91. Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell. 2024 May 2;31(5):617-639. doi: 10.1016/j.stem.2024.04.004. PMID: 38701757.
  92. Zhang C, Yu JJ, Yang C, Yuan ZL, Zeng H, Wang JJ, Shang S, Lv XX, Liu XT, Liu J, Xue Q, Cui B, Tan FW, Hua F. Wild-type IDH1 maintains NSCLC stemness and chemoresistance through activation of the serine biosynthetic pathway. Sci Transl Med. 2023 Dec 13;15(726):eade4113. doi: 10.1126/scitranslmed.ade4113. Epub 2023 Dec 13. PMID: 38091408.
  93. Huang R, Yamamoto T, Nakata E, Ozaki T, Kurozumi K, Wei F, Tomizawa K, Fujimura A. CDKAL1 Drives the Maintenance of Cancer Stem-Like Cells by Assembling the eIF4F Translation Initiation Complex. Adv Sci (Weinh). 2023 Apr;10(12):e2206542. doi: 10.1002/advs.202206542. Epub 2023 Feb 14. PMID: 36786012; PMCID: PMC10131790
  94. Qin S, Mao Y, Wang H, Duan Y, Zhao L. The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. Int J Biol Sci. 2021 Jun 26;17(11):2718-2736. doi: 10.7150/ijbs.60641. PMID: 34345203; PMCID: PMC8326131.
  95. Xue M, Dong L, Zhang H, Li Y, Qiu K, Zhao Z, Gao M, Han L, Chan AKN, Li W, Leung K, Wang K, Pokharel SP, Qing Y, Liu W, Wang X, Ren L, Bi H, Yang L, Shen C, Chen Z, Melstrom L, Li H, Timchenko N, Deng X, Huang W, Rosen ST, Tian J, Xu L, Diao J, Chen CW, Chen J, Shen B, Chen H, Su R. METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation. J Hematol Oncol. 2024 Feb 1;17(1):7. doi: 10.1186/s13045-024-01526-9. PMID: 38302992; PMCID: PMC10835888.
  96. Cieśla M, Ngoc PCT, Cordero E, Martinez ÁS, Morsing M, Muthukumar S, Beneventi G, Madej M, Munita R, Jönsson T, Lövgren K, Ebbesson A, Nodin B, Hedenfalk I, Jirström K, Vallon-Christersson J, Honeth G, Staaf J, Incarnato D, Pietras K, Bosch A, Bellodi C. Oncogenic translation directs spliceosome dynamics revealing an integral role for SF3A3 in breast cancer. Mol Cell. 2021 Apr 1;81(7):1453-1468.e12. doi: 10.1016/j.molcel.2021.01.034. Epub 2021 Mar 3. PMID: 33662273.
  97. Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab. 2024 Sep 3;36(9):1945-1962. doi: 10.1016/j.cmet.2024.07.022. PMID: 39232280; PMCID: PMC11586076.
  98. Biffo S, Manfrini N, Ricciardi S. Crosstalks between translation and metabolism in cancer. Curr Opin Genet Dev. 2018 Feb;48:75-81. doi: 10.1016/j.gde.2017.10.011. Epub 2017 Nov 15. PMID: 29153483.
  99. van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010 Apr;10(4):301-9. doi: 10.1038/nrc2819. PMID: 20332779.
  100. Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver's seat. Signal Transduct Target Ther. 2020 Jul 10;5(1):124. doi: 10.1038/s41392-020-00235-2. PMID: 32651356; PMCID: PMC7351732.
  101. Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell. 2014 May 22;157(5):1088-103. doi: 10.1016/j.cell.2014.03.052. Erratum in: Cell. 2014 Jul 31;158(3):689. PMID: 24855946; PMCID: PMC4140650.
  102. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004. Erratum in: Cell. 2017 Apr 6;169(2):361-371. doi: 10.1016/j.cell.2017.03.035. PMID: 28283069; PMCID: PMC5394987.
  103. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010 Jul 30;39(2):171-83. doi: 10.1016/j.molcel.2010.06.022. PMID: 20670887; PMCID: PMC2946786.
  104. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen PK, Viero G, Tebaldi T, Offenhäuser N, Rozman J, Rathkolb B, Neschen S, Klingenspor M, Wolf E, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Quattrone A, Falciani F, Biffo S. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015 Sep 18;6:8261. doi: 10.1038/ncomms9261. PMID: 26383020; PMCID: PMC4595657.
  105. Scagliola A, Miluzio A, Ventura G, Oliveto S, Cordiglieri C, Manfrini N, Cirino D, Ricciardi S, Valenti L, Baselli G, D’Ambrosio R, Maggioni M, Brina D, Bresciani A, Biffo S. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat Commun. 2021;12(1):4878.
  106. Shah M, Su D, Scheliga JS, Pluskal T, Boronat S, Motamedchaboki K, Campos AR, Qi F, Hidalgo E, Yanagida M, Wolf DA. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism. Cell Rep. 2016 Aug 16;16(7):1891-902. doi: 10.1016/j.celrep.2016.07.006. Epub 2016 Jul 28. PMID: 27477275; PMCID: PMC4988921.
  107. Cao TT, Lin SH, Fu L, Tang Z, Che CM, Zhang LY, Ming XY, Liu TF, Tang XM, Tan BB, Xiang D, Li F, Chan OY, Xie D, Cai Z, Guan XY. Eukaryotic translation initiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma cells. Carcinogenesis. 2017 Jan;38(1):94-104. doi: 10.1093/carcin/bgw119. Epub 2016 Nov 22. PMID: 27879277.
  108. Cerezo M, Robert C, Liu L, Shen S. The Role of mRNA Translational Control in Tumor Immune Escape and Immunotherapy Resistance. Cancer Res. 2021 Nov 15;81(22):5596-5604. doi: 10.1158/0008-5472.CAN-21-1466. Epub 2021 Sep 1. PMID: 34470777.
  109. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011 Apr;12(4):295-303. doi: 10.1038/ni.2005. Epub 2011 Feb 27. PMID: 21358638; PMCID: PMC3077821.
  110. Volta V, Pérez-Baos S, de la Parra C, Katsara O, Ernlund A, Dornbaum S, Schneider RJ. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat Commun. 2021 Nov 30;12(1):6979. doi: 10.1038/s41467-021-27087-w. PMID: 34848685; PMCID: PMC8632918.
  111. Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8+ T memory and exhaustion by the mTOR signals. Cell Mol Immunol. 2023 Sep;20(9):1023-1039. doi: 10.1038/s41423-023-01064-3. Epub 2023 Aug 15. Erratum in: Cell Mol Immunol. 2023 Nov;20(11):1398. doi: 10.1038/s41423-023-01090-1. PMID: 37582972; PMCID: PMC10468538.
  112. De Ponte Conti B, Miluzio A, Grassi F, Abrignani S, Biffo S, Ricciardi S. mTOR-dependent translation drives tumor infiltrating CD8+ effector and CD4+ Treg cells expansion. Elife. 2021 Nov 17;10:e69015. doi: 10.7554/eLife.69015. PMID: 34787568; PMCID: PMC8598161.
  113. Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, Liu LN, Gills JJ, Dennis PA. Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. Cancer Res. 2016 Jan 15;76(2):227-38. doi: 10.1158/0008-5472.CAN-14-3362. Epub 2015 Dec 4. PMID: 26637667.
  114. Xu Y, Poggio M, Jin HY, Shi Z, Forester CM, Wang Y, Stumpf CR, Xue L, Devericks E, So L, Nguyen HG, Griselin A, Gordan JD, Umetsu SE, Reich SH, Worland ST, Asthana S, Barna M, Webster KR, Cunningham JT, Ruggero D. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat Med. 2019 Feb;25(2):301-311. doi: 10.1038/s41591-018-0321-2. Epub 2019 Jan 14. PMID: 30643286; PMCID: PMC6613562.
  115. Yamaguchi H, Hsu JM, Yang WH, Hung MC. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol. 2022 May;19(5):287-305. doi: 10.1038/s41571-022-00601-9. Epub 2022 Feb 7. PMID: 35132224.
  116. Riesenberg BP, Hunt EG, Tennant MD, Hurst KE, Andrews AM, Leddy LR, Neskey DM, Hill EG, Rivera GOR, Paulos CM, Gao P, Thaxton JE. Stress-Mediated Attenuation of Translation Undermines T-cell Activity in Cancer. Cancer Res. 2022 Dec 2;82(23):4386-4399. doi: 10.1158/0008-5472.CAN-22-1744. PMID: 36126165; PMCID: PMC9722626.
  117. Cerezo M, Guemiri R, Druillennec S, Girault I, Malka-Mahieu H, Shen S, Allard D, Martineau S, Welsch C, Agoussi S, Estrada C, Adam J, Libenciuc C, Routier E, Roy S, Désaubry L, Eggermont AM, Sonenberg N, Scoazec JY, Eychène A, Vagner S, Robert C. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med. 2018 Dec;24(12):1877-1886. doi: 10.1038/s41591-018-0217-1. Epub 2018 Oct 29. PMID: 30374200.
  118. Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y, Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 2021 Nov 6;14(1):187. doi: 10.1186/s13045-021-01200-4. PMID: 34742349; PMCID: PMC8572421.
  119. Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol. 2023 Jun 5;16(1):59. doi: 10.1186/s13045-023-01453-1. PMID: 37277776; PMCID: PMC10240810.
  120. Mastelic-Gavillet B, Navarro Rodrigo B, Décombaz L, Wang H, Ercolano G, Ahmed R, Lozano LE, Ianaro A, Derré L, Valerio M, Tawadros T, Jichlinski P, Nguyen-Ngoc T, Speiser DE, Verdeil G, Gestermann N, Dormond O, Kandalaft L, Coukos G, Jandus C, Ménétrier-Caux C, Caux C, Ho PC, Romero P, Harari A, Vigano S. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. J Immunother Cancer. 2019 Oct 10;7(1):257. doi: 10.1186/s40425-019-0719-5. PMID: 31601268; PMCID: PMC6788118.
  121. Wang A, Huang H, Shi JH, Yu X, Ding R, Zhang Y, Han Q, Ni ZY, Li X, Zhao R, Zou Q. USP47 inhibits m6A-dependent c-Myc translation to maintain regulatory T cell metabolic and functional homeostasis. J Clin Invest. 2023 Dec 1;133(23):e169365. doi: 10.1172/JCI169365. PMID: 37788092; PMCID: PMC10688989.
  122. Nikolcheva T, Pyronnet S, Chou SY, Sonenberg N, Song A, Clayberger C, Krensky AM. A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes. J Clin Invest. 2002 Jul;110(1):119-26. doi: 10.1172/JCI15336. PMID: 12093895; PMCID: PMC151028.
  123. Zeng Z, Lan T, Wei Y, Wei X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 2022 Jan;9(1):12-27. doi: 10.1016/j.gendis.2021.08.004. Epub 2021 Aug 26. PMID: 34514075; PMCID: PMC8423937.
  124. Bartish M, Tong D, Pan Y, Wallerius M, Liu H, Ristau J, de Souza Ferreira S, Wallmann T, van Hoef V, Masvidal L, Kerzel T, Joly AL, Goncalves C, Preston SEJ, Ebrahimian T, Seitz C, Bergh J, Pietras K, Lehoux S, Naldini L, Andersson J, Squadrito ML, Del Rincón SV, Larsson O, Rolny C. MNK2 governs the macrophage antiinflammatory phenotype. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27556-27565. doi: 10.1073/pnas.1920377117. Epub 2020 Oct 19. PMID: 33077599; PMCID: PMC7959504.
  125. Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10284-9. doi: 10.1073/pnas.181201398. Epub 2001 Aug 21. PMID: 11517314; PMCID: PMC56953.
  126. Su X, Yu Y, Zhong Y, Giannopoulou EG, Hu X, Liu H, Cross JR, Rätsch G, Rice CM, Ivashkiv LB. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015 Aug;16(8):838-849. doi: 10.1038/ni.3205. Epub 2015 Jun 29. PMID: 26147685; PMCID: PMC4509841.
  127. Hipolito VEB, Diaz JA, Tandoc KV, Oertlin C, Ristau J, Chauhan N, Saric A, Mclaughlan S, Larsson O, Topisirovic I, Botelho RJ. Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PLoS Biol. 2019 Dec 4;17(12):e3000535. doi: 10.1371/journal.pbio.3000535. PMID: 31800587; PMCID: PMC6913987.
  128. Jin F, Wu Z, Hu X, Zhang J, Gao Z, Han X, Qin J, Li C, Wang Y. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer Biol Med. 2019 Feb;16(1):38-54. doi: 10.20892/j.issn.2095-3941.2018.0253. PMID: 31119045; PMCID: PMC6528454.
  129. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019 Mar 7;176(6):1248-1264. doi: 10.1016/j.cell.2019.01.021. PMID: 30849371; PMCID: PMC6410740.
  130. Arcondéguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res. 2013 Sep;41(17):7997-8010. doi: 10.1093/nar/gkt539. Epub 2013 Jul 12. PMID: 23851566; PMCID: PMC3783158.
  131. Zhang H, Zhou J, Li J, Wang Z, Chen Z, Lv Z, Ge L, Xie G, Deng G, Rui Y, Huang H, Chen L, Wang H. N6-Methyladenosine Promotes Translation of VEGFA to Accelerate Angiogenesis in Lung Cancer. Cancer Res. 2023 Jul 5;83(13):2208-2225. doi: 10.1158/0008-5472.CAN-22-2449. PMID: 37103476.
  132. Luo H, Shen Y, Liao W, Li Q, Wu N, Zhong J, Xiao C, Gan J, Yang Y, Dong E, Zhang G, Liu B, Yue X, Xu L, Liu Y, Zhao C, Zhong Q, Yang H. The inhibition of protein translation promotes tumor angiogenic switch. Mol Biomed. 2022 Jun 13;3(1):18. doi: 10.1186/s43556-022-00081-4. PMID: 35695994; PMCID: PMC9192909.
  133. Longchamp A, Mirabella T, Arduini A, MacArthur MR, Das A, Treviño-Villarreal JH, Hine C, Ben-Sahra I, Knudsen NH, Brace LE, Reynolds J, Mejia P, Tao M, Sharma G, Wang R, Corpataux JM, Haefliger JA, Ahn KH, Lee CH, Manning BD, Sinclair DA, Chen CS, Ozaki CK, Mitchell JR. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 2018 Mar 22;173(1):117-129.e14. doi: 10.1016/j.cell.2018.03.001. PMID: 29570992; PMCID: PMC5901681.
  134. Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z, Yang X, Xu B, Liu X, Li CY, Tian L, Huang Q. Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett. 2017 Jan 28;385:12-20. doi: 10.1016/j.canlet.2016.10.042. Epub 2016 Nov 5. PMID: 27826040; PMCID: PMC5323266.
  135. Byrnes K, White S, Chu Q, Meschonat C, Yu H, Johnson LW, Debenedetti A, Abreo F, Turnage RH, McDonald JC, Li BD. High eIF4E, VEGF, and microvessel density in stage I to III breast cancer. Ann Surg. 2006 May;243(5):684-90; discussion 691-2. doi: 10.1097/01.sla.0000216770.23642.d8. PMID: 16633004; PMCID: PMC1570543.
  136. Li F, Sun H, Yu Y, Che N, Han J, Cheng R, Zhao N, Guo Y, Huang C, Zhang D. RIPK1-dependent necroptosis promotes vasculogenic mimicry formation via eIF4E in triple-negative breast cancer. Cell Death Dis. 2023 May 22;14(5):335. doi: 10.1038/s41419-023-05841-w. Erratum in: Cell Death Dis. 2023 Sep 14;14(9):607. doi: 10.1038/s41419-023-06052-z. PMID: 37217473; PMCID: PMC10203343.
  137. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005 Sep;8(3):211-26. doi: 10.1016/j.ccr.2005.08.002. PMID: 16169466.
  138. Park EH, Lee JM, Blais JD, Bell JC, Pelletier J. Internal translation initiation mediated by the angiogenic factor Tie2. J Biol Chem. 2005 Jun 3;280(22):20945-53. doi: 10.1074/jbc.M412744200. Epub 2005 Mar 31. PMID: 15802272.
  139. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021 Dec;18(12):792-804. doi: 10.1038/s41571-021-00546-5. Epub 2021 Sep 6. PMID: 34489603; PMCID: PMC8791784.
  140. Zhang L, Pan X, Hershey JW. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem. 2007 Feb 23;282(8):5790-800. doi: 10.1074/jbc.M606284200. Epub 2006 Dec 14. PMID: 17170115.
  141. Verginadis II, Avgousti H, Monslow J, Skoufos G, Chinga F, Kim K, Leli NM, Karagounis IV, Bell BI, Velalopoulou A, Salinas CS, Wu VS, Li Y, Ye J, Scott DA, Osterman AL, Sengupta A, Weljie A, Huang M, Zhang D, Fan Y, Radaelli E, Tobias JW, Rambow F, Karras P, Marine JC, Xu X, Hatzigeorgiou AG, Ryeom S, Diehl JA, Fuchs SY, Puré E, Koumenis C. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol. 2022 Jun;24(6):940-953. doi: 10.1038/s41556-022-00918-8. Epub 2022 Jun 2. PMID: 35654839; PMCID: PMC9203279.
  142. Li D, Huang P, Xia L, Leng W, Qin S. Cancer-associated fibroblasts promote gastric cancer cell proliferation by paracrine FGF2-driven ribosome biogenesis. Int Immunopharmacol. 2024 Apr 20;131:111836. doi: 10.1016/j.intimp.2024.111836. Epub 2024 Mar 12. PMID: 38479160.
  143. Ubil E, Duan J, Pillai IC, Rosa-Garrido M, Wu Y, Bargiacchi F, Lu Y, Stanbouly S, Huang J, Rojas M, Vondriska TM, Stefani E, Deb A. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature. 2014 Oct 30;514(7524):585-90. doi: 10.1038/nature13839. Epub 2014 Oct 15. PMID: 25317562; PMCID: PMC4214889.
  144. Wei W, Liu K, Huang X, Tian S, Wang H, Zhang C, Ye J, Dong Y, An Z, Ma X, Wang B, Huang Y, Zhang X. EIF4A3-mediated biogenesis of circSTX6 promotes bladder cancer metastasis and cisplatin resistance. J Exp Clin Cancer Res. 2024 Jan 2;43(1):2. doi: 10.1186/s13046-023-02932-6. PMID: 38163881; PMCID: PMC10759346.
  145. Andrieu C, Taieb D, Baylot V, Ettinger S, Soubeyran P, De-Thonel A, Nelson C, Garrido C, So A, Fazli L, Bladou F, Gleave M, Iovanna JL, Rocchi P. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene. 2010 Apr 1;29(13):1883-96. doi: 10.1038/onc.2009.479. Epub 2010 Jan 18. PMID: 20101233.
  146. Prabhu SA, Moussa O, Gonçalves C, LaPierre JH, Chou H, Huang F, Richard VR, Ferruzo PYM, Guettler EM, Soria-Bretones I, Kirby L, Gagnon N, Su J, Silvester J, Krisna SS, Rose AAN, Sheppard KE, Cescon DW, Mallette FA, Zahedi RP, Borchers CH, Del Rincon SV, Miller WH. Inhibition of the MNK1/2-eIF4E Axis Augments Palbociclib-Mediated Antitumor Activity in Melanoma and Breast Cancer. Mol Cancer Ther. 2023 Feb 1;22(2):192-204. doi: 10.1158/1535-7163.MCT-22-0092. PMID: 36722142.
  147. Konieczkowski DJ, Johannessen CM, Garraway LA. A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell. 2018 May 14;33(5):801-815. doi: 10.1016/j.ccell.2018.03.025. PMID: 29763622; PMCID: PMC5957297.
  148. Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, Thomas M, Basmadjian C, Ribeiro N, Thuaud F, Mateus C, Routier E, Kamsu-Kom N, Agoussi S, Eggermont AM, Désaubry L, Robert C, Vagner S. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014 Sep 4;513(7516):105-9. doi: 10.1038/nature13572. Epub 2014 Jul 27. PMID: 25079330.
  149. Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov. 2021 Apr;11(4):874-899. doi: 10.1158/2159-8290.CD-20-1638. PMID: 33811122.
  150. Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020 Jan;20(1):25-39. doi: 10.1038/s41577-019-0218-4. Epub 2019 Sep 30. PMID: 31570880; PMCID: PMC8499690.
  151. Hashimoto A, Handa H, Hata S, Tsutaho A, Yoshida T, Hirano S, Hashimoto S, Sabe H. Inhibition of mutant KRAS-driven overexpression of ARF6 and MYC by an eIF4A inhibitor drug improves the effects of anti-PD-1 immunotherapy for pancreatic cancer. Cell Commun Signal. 2021 May 17;19(1):54. doi: 10.1186/s12964-021-00733-y. PMID: 34001163; PMCID: PMC8127265.
  152. Kong T, Xue Y, Cencic R, Zhu X, Monast A, Fu Z, Pilon V, Sangwan V, Guiot MC, Foulkes WD, Porco JA Jr, Park M, Pelletier J, Huang S. eIF4A Inhibitors Suppress Cell-Cycle Feedback Response and Acquired Resistance to CDK4/6 Inhibition in Cancer. Mol Cancer Ther. 2019 Nov;18(11):2158-2170. doi: 10.1158/1535-7163.MCT-19-0162. Epub 2019 Aug 8. PMID: 31395685; PMCID: PMC7132330.
  153. Garrido MF, Martin NJ, Bertrand M, Gaudin C, Commo F, El Kalaany N, Al Nakouzi N, Fazli L, Del Nery E, Camonis J, Perez F, Lerondel S, Le Pape A, Compagno D, Gleave M, Loriot Y, Désaubry L, Vagner S, Fizazi K, Chauchereau A. Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer. Clin Cancer Res. 2019 Jan 15;25(2):710-723. doi: 10.1158/1078-0432.CCR-18-0704. Epub 2018 Oct 15. PMID: 30322877.
  154. Yuan F, Zhou H, Liu C, Wang Y, Quan J, Liu J, Li H, von Itzstein M, Yu X. Heparanase interacting BCLAF1 to promote the development and drug resistance of ICC through the PERK/eIF2α pathway. Cancer Gene Ther. 2024 Jun;31(6):904-916. doi: 10.1038/s41417-024-00754-y. Epub 2024 Mar 11. PMID: 38467765.
  155. Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, Lee JS, Lazar I, Sheikh Khalil S, Feiler Y, Kluger H, Kahana C, Brown K, Ruppin E, Ronai ZA, Orian A. Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. J Invest Dermatol. 2020 Dec;140(12):2466-2477. doi: 10.1016/j.jid.2020.04.008. Epub 2020 Apr 29. PMID: 32360601; PMCID: PMC8081033.
  156. Palam LR, Gore J, Craven KE, Wilson JL, Korc M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis. 2015 Oct 15;6(10):e1913. doi: 10.1038/cddis.2015.264. PMID: 26469962; PMCID: PMC4632294.
  157. She C, Wu C, Guo W, Xie Y, Li S, Liu W, Xu C, Li H, Cao P, Yang Y, Wang X, Chang A, Feng Y, Hao J. Combination of RUNX1 inhibitor and gemcitabine mitigates chemo-resistance in pancreatic ductal adenocarcinoma by modulating BiP/PERK/eIF2α-axis-mediated endoplasmic reticulum stress. J Exp Clin Cancer Res. 2023 Sep 11;42(1):238. doi: 10.1186/s13046-023-02814-x. PMID: 37697370; PMCID: PMC10494371.
  158. Cai W, Rong D, Ding J, Zhang X, Wang Y, Fang Y, Xiao J, Yang S, Wang H. Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to cancer cell apoptosis and renders synergism to overcome paclitaxel resistance in breast cancer cells. Cancer Cell Int. 2024 Jul 17;24(1):249. doi: 10.1186/s12935-024-03443-w. PMID: 39020371; PMCID: PMC11256575.
  159. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC, Gao S, Mills GB, Brugge JS. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell. 2012 Feb 14;21(2):227-39. doi: 10.1016/j.ccr.2011.12.024. PMID: 22340595; PMCID: PMC3297962.
  160. Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer. 2024 Aug 30;23(1):178. doi: 10.1186/s12943-024-02089-6. PMID: 39215288; PMCID: PMC11363509.
  161. Shen S, Faouzi S, Bastide A, Martineau S, Malka-Mahieu H, Fu Y, Sun X, Mateus C, Routier E, Roy S, Desaubry L, André F, Eggermont A, David A, Scoazec JY, Vagner S, Robert C. An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat Commun. 2019 Dec 16;10(1):5713. doi: 10.1038/s41467-019-13360-6. PMID: 31844050; PMCID: PMC6915789.
  162. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, Huang X, Liu Y, Wang J, Dougherty U, Bissonnette MB, Shen B, Weichselbaum RR, Xu MM, He C. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019 Feb;566(7743):270-274. doi: 10.1038/s41586-019-0916-x. Epub 2019 Feb 6. Erratum in: Nature. 2019 Apr;568(7751):E3. doi: 10.1038/s41586-019-1046-1. PMID: 30728504; PMCID: PMC6522227.
  163. Duluc C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F, Gayral M, Cordelier P, Delisle MB, Bousquet-Dubouch MP, Tomasini R, Schmid H, Mathonnet M, Pyronnet S, Martineau Y, Bousquet C. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol Med. 2015 Jun;7(6):735-53. doi: 10.15252/emmm.201404346. PMID: 25834145; PMCID: PMC4459815.
  164. Cencic R, Hall DR, Robert F, Du Y, Min J, Li L, Qui M, Lewis I, Kurtkaya S, Dingledine R, Fu H, Kozakov D, Vajda S, Pelletier J. Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1046-51. doi: 10.1073/pnas.1011477108. Epub 2010 Dec 29. Erratum in: Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6689. PMID: 21191102; PMCID: PMC3024666.
  165. De A, Jacobson BA, Peterson MS, Stelzner ME, Jay-Dixon J, Kratzke MG, Patel MR, Bitterman PB, Kratzke RA. Inhibition of oncogenic cap-dependent translation by 4EGI-1 reduces growth, enhances chemosensitivity and alters genome-wide translation in non-small cell lung cancer. Cancer Gene Ther. 2019 May;26(5-6):157-165. doi: 10.1038/s41417-018-0058-6. Epub 2018 Nov 12. PMID: 30420719.
  166. Su D, Ding C, Qiu J, Yang G, Wang R, Liu Y, Tao J, Luo W, Weng G, Zhang T. Ribosome profiling: a powerful tool in oncological research. Biomark Res. 2024 Jan 25;12(1):11. doi: 10.1186/s40364-024-00562-4. PMID: 38273337; PMCID: PMC10809610.
  167. Zeng H, Huang J, Ren J, Wang CK, Tang Z, Zhou H, Zhou Y, Shi H, Aditham A, Sui X, Chen H, Lo JA, Wang X. Spatially resolved single-cell translatomics at molecular resolution. Science. 2023 Jun 30;380(6652):eadd3067. doi: 10.1126/science.add3067. Epub 2023 Jun 30. Erratum in: Science. 2024 Mar 8;383(6687):eado9025. doi: 10.1126/science.ado9025. PMID: 37384709; PMCID: PMC11146668.
  168. Li K, Tan G, Zhang X, Lu W, Ren J, Si Y, Adu-Gyamfi EA, Li F, Wang Y, Xie B, Wang M. EIF4G1 Is a Potential Prognostic Biomarker of Breast Cancer. Biomolecules. 2022 Nov 26;12(12):1756. doi: 10.3390/biom12121756. PMID: 36551184; PMCID: PMC9776011.
  169. Lee NP, Tsang FH, Shek FH, Mao M, Dai H, Zhang C, Dong S, Guan XY, Poon RT, Luk JM. Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer. 2010 Aug 15;127(4):968-76. doi: 10.1002/ijc.25100. PMID: 19998337.
  170. Wang R, Geng J, Wang JH, Chu XY, Geng HC, Chen LB. Overexpression of eukaryotic initiation factor 4E (eIF4E) and its clinical significance in lung adenocarcinoma. Lung Cancer. 2009 Nov;66(2):237-44. doi: 10.1016/j.lungcan.2009.02.001. Epub 2009 Mar 3. PMID: 19261348.
  171. Graff JR, Konicek BW, Carter JH, Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res. 2008 Feb 1;68(3):631-4. doi: 10.1158/0008-5472.CAN-07-5635. PMID: 18245460.
  172. Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal. 2020 Nov 4;18(1):175. doi: 10.1186/s12964-020-00607-9. PMID: 33148274; PMCID: PMC7640403.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search