Gayathri Ananthakrishnan*, Matthias Dehmer and Agata Makowska
Volume6-Issue5
Dates: Received: 2025-04-22 | Accepted: 2025-05-02 | Published: 2025-05-05
Pages: 400-406
Abstract
Personalized medicine is the customizable approach to medical treatment and healthcare decisions for individual patients based on their unique genetic, environmental, and lifestyle factors. Integrating Artificial Intelligence (AI) into personalized medicine could improve this diagnostic trend. AI predictive models have shown significant promise in diagnosing Pulmonary Hypertension (PH). PH is a complex and often underdiagnosed condition associated with significant morbidity and mortality. Early diagnosis, accurate risk stratification, and personalized treatment are critical for improving patient outcomes in this rare disease. Our review primarily focuses on the currently available predictive AI models for the early detection of Pulmonary Hypertension (PH) using electronic health records. We also emphasize the importance of advanced AI tools integrating additional features, such as genomics. Specifically, we discuss the use of machine learning techniques, including both supervised and unsupervised approaches. Despite the potential of AI predictive tools to transform early detection of PH, challenges remain in effectively integrating them into clinical workflows and interpretation. These challenges arise from issues such as the availability of large, unintegrated datasets, unclear definitions of clustered data, a lack of external validation, and the ineffective use of unstructured data, such as clinicians' notes.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2097
Certificate of Publication

Copyright
© 2025 Ananthakrishnan G, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Ananthakrishnan G, Dehmer M, Makowska A. Advancements and Challenges of AI-Based Tools as an Effective Personalized Medicine in the Future for the Early Diagnosis of Pulmonary Hypertension. J Biomed Res Environ Sci. 2025 May 05; 6(5): 400-406. doi: 10.37871/jbres2097, Article ID: JBRES2097, Available at: https://www.jelsciences.com/articles/jbres2097.pdf
Subject area(s)
References
- Wilkins MR. Personalized Medicine for Pulmonary Hypertension: The Future Management of Pulmonary Hypertension Requires a New Taxonomy. Clin Chest Med. 2021 Mar;42(1):207-216. doi: 10.1016/j.ccm.2020.10.004. PMID: 33541614.
- Whitcomb DC. What is personalized medicine and what should it replace? Nat Rev Gastroenterol Hepatol. 2012 May 22;9(7):418-24. doi: 10.1038/nrgastro.2012.100. PMID: 22614753; PMCID: PMC3684057.
- Might M, Crouse AB. Why rare disease needs precision medicine-and precision medicine needs rare disease. Cell Rep Med. 2022 Feb 15;3(2):100530. doi: 10.1016/j.xcrm.2022.100530. PMID: 35243424; PMCID: PMC8861960.
- Carini C, Seyhan AA. Tribulations and future opportunities for artificial intelligence in precision medicine. J Transl Med. 2024 Apr 30;22(1):411. doi: 10.1186/s12967-024-05067-0. PMID: 38702711; PMCID: PMC11069149.
- Okolo CA, Olorunsogo T, Babawarun O. A comprehensive review of AI applications in personalized medicine. IJSRA. 2024;11(1):2544-2549. doi: 10.30574/ijsra.2024.11.1.0338.
- DuBrock HM, Wagner TE, Carlson K, Carpenter CL, Awasthi S, Attia ZI, Frantz RP, Friedman PA, Kapa S, Annis J, Brittain EL, Hemnes AR, Asirvatham SJ, Babu M, Prasad A, Yoo U, Barve R, Selej M, Agron P, Kogan E, Quinn D, Dunnmon P, Khan N, Soundararajan V. An electrocardiogram-based AI algorithm for early detection of pulmonary hypertension. Eur Respir J. 2024 Jul 25;64(1):2400192. doi: 10.1183/13993003.00192-2024. PMID: 38936966; PMCID: PMC11269769.
- Parekh AE, Shaikh OA, Simran, Manan S, Hasibuzzaman MA. Artificial intelligence (AI) in personalized medicine: AI-generated personalized therapy regimens based on genetic and medical history: short communication. Ann Med Surg (Lond). 2023 Sep 13;85(11):5831-5833. doi: 10.1097/MS9.0000000000001320. PMID: 37915639; PMCID: PMC10617817.
- Emmert-Streib F, Moutari S, Dehmer M. Elements of data science, machine learning, and artificial intelligence using r. Springer Nature. 2023. doi: 10.1007/978-3-031-13339-8.
- Harary F. Graph theory, addison-wesley, boston. 1969.
- Emmert-Streib F, Dehmer M. Analysis of microarray data: A network-based approach, Wiley-VCH. 2008.
- Dehmer M. Structural analysis of complex networks. Birkhäuser. 2010.
- Wang RS, Huang S, Waldo SW, Hess E, Gokhale M, Johnson SW, Zeder K, Choudhary G, Leopold JA, Oldham WM, Kovacs G, Freiberg MS, Tedford RJ, Maron BA, Brittain EL. Elevated Pulmonary Arterial Compliance Is Associated with Survival in Pulmonary Hypertension: Results from a Novel Network Medicine Analysis. Am J Respir Crit Care Med. 2023 Aug 1;208(3):312-321. doi: 10.1164/rccm.202211-2097OC. PMID: 37276608; PMCID: PMC10395727.
- Zang H, Zhang Q, Li X. Non-Coding RNA Networks in Pulmonary Hypertension. Front Genet. 2021 Nov 30;12:703860. doi: 10.3389/fgene.2021.703860. PMID: 34917122; PMCID: PMC8669616.
- Wang X, Liu M, Li J, Wang Z, Liang Q, Yan Z, Wang J, Luan X. Relationship between quality of life, fear of disease progression, and coping styles in patients with pulmonary hypertension: A network analysis. Res Nurs Health. 2023 Oct;46(5):546-557. doi: 10.1002/nur.22333. Epub 2023 Aug 3. PMID: 37537879.
- Liu M, Huang Y. BMC Psychology. 2024;12:702.
- Kogan E, Didden EM, Lee E, Nnewihe A, Stamatiadis D, Mataraso S, Quinn D, Rosenberg D, Chehoud C, Bridges C. A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records. Int J Cardiol. 2023 Mar 1;374:95-99. doi: 10.1016/j.ijcard.2022.12.016. Epub 2022 Dec 14. PMID: 36528138.
- Al-Omary MS, Sugito S, Boyle AJ, Sverdlov AL, Collins NJ. Pulmonary hypertension due to left heart disease. Hypertension. 2020;75(6):1397-1408. doi: 10.1161/hypertensionaha.119.14330.
- Hanna MG, Pantanowitz L, Jackson B, Palmer O, Visweswaran S, Pantanowitz J, Deebajah M, Rashidi HH. Ethical and Bias Considerations in Artificial Intelligence/Machine Learning. Mod Pathol. 2025 Mar;38(3):100686. doi: 10.1016/j.modpat.2024.100686. Epub 2024 Dec 16. PMID: 39694331.
- Guan H, Novoa-Laurentiev J, Zhou L. SCD-Tron: Leveraging Large Clinical Language Model for Early Detection of Cognitive Decline from Electronic Health Records. medRxiv [Preprint]. 2024 Nov 2:2024.10.31.24316386. doi: 10.1101/2024.10.31.24316386. PMID: 39574862; PMCID: PMC11581067.
- Santos CS, Amorim-Lopes M. Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review. BMC Med Res Methodol. 2025 Feb 21;25(1):45. doi: 10.1186/s12874-025-02463-y. PMID: 39984835; PMCID: PMC11843972.
- Sweatt AJ, Hedlin HK, Balasubramanian V, Hsi A, Blum LK, Robinson WH, Haddad F, Hickey PM, Condliffe R, Lawrie A, Nicolls MR, Rabinovitch M, Khatri P, Zamanian RT. Discovery of Distinct Immune Phenotypes Using Machine Learning in Pulmonary Arterial Hypertension. Circ Res. 2019 Mar 15;124(6):904-919. doi: 10.1161/CIRCRESAHA.118.313911. PMID: 30661465; PMCID: PMC6428071.
- Șenbabaoğlu Y, Michailidis G, Li J. Critical limitations of consensus clustering in class discovery. Sci Rep. 2014;4(1):6207. doi: 10.1038/srep06207.
- Fadilah A, Putri VYS, Puling IMDR, Willyanto SE. Assessing the precision of machine learning for diagnosing pulmonary arterial hypertension: a systematic review and meta-analysis of diagnostic accuracy studies. Front Cardiovasc Med. 2024 Aug 27;11:1422327. doi: 10.3389/fcvm.2024.1422327. PMID: 39257851; PMCID: PMC11385608.
- Kwon JM, Kim KH, Medina-Inojosa J, Jeon KH, Park J, Oh BH. Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. J Heart Lung Transplant. 2020 Aug;39(8):805-814. doi: 10.1016/j.healun.2020.04.009. Epub 2020 Apr 23. PMID: 32381339.
- Leha A, Hellenkamp K, Unsöld B, Mushemi-Blake S, Shah AM, Hasenfuß G, Seidler T. A machine learning approach for the prediction of pulmonary hypertension. PLoS One. 2019 Oct 25;14(10):e0224453. doi: 10.1371/journal.pone.0224453. PMID: 31652290; PMCID: PMC6814224.
- Winter P, Carusi A. Professional expectations and patient expectations concerning the development of Artificial Intelligence (AI) for the early diagnosis of Pulmonary Hypertension (PH). J Responsib Technol. 2022 Dec;12:None. doi: 10.1016/j.jrt.2022.100052. PMID: 36568032; PMCID: PMC9767405.
- Vidmar DM, Thompson W, Morland K, Lee G, Miotto R, Leader J, Pfeifer J, Fornwalt B, Nelsen A, Chen R. A novel phenotyping pipeline to improve identification of patients with pulmonary hypertension in electronic health records. D102. Hot Topics in Behavioral Science and Health Services Research. 2024. doi: 10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a7290.