Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Synergy of Ergothioneine and Tyrosine-Arginine Peptide to boost β-Endorphin Generation to Alleviate Stress-Induced Dermatological Disorders

Medicine Group    Start Submission

Fangru Jiang and Zhe Liu*

Volume6-Issue4
Dates: Received: 2025-03-17 | Accepted: 2025-04-08 | Published: 2025-04-09
Pages: 312-319

Abstract

Objective: This study aimed to investigate the synergistic effects of Ergothioneine (EGT) and Tyrosine-Arginine Peptide (TAP) in promoting β-endorphin production in the skin, aiming to alleviate stress-induced dermatological disorders.

Method: An optimal ratio between EGT and TAP for β-endorphin stimulation was ascertained through cell experiments using human dermal fibroblasts and immortalized human keratinocytes. These cells were treated with cortisol to induce stress-related conditions. β-endorphin content was measured following treatment with various EGT-TAP ratios. Additional gene expression analysis was conducted to observe the regulatory effects of the combination on key skin health indicators, using specific primers and qPCR methods.

Results: The combination of EGT and TAP displayed a significant synergistic effect on β-endorphin production, with the optimal ratio identified as 9:1. This ratio resulted in a 175.75% and 190.20% increase in β-endorphin generation compared to individual EGT and TAP treatments, respectively. The EGT-TAP combination also mitigated cortisol-induced disruptions in gene expression, positively affecting the expression of extracellular matrix proteins and mitigating the negative effects of stress on skin cell models.

Conclusion: The combined administration of EGT and TAP at a 9:1 ratio significantly boosts β-endorphin levels and beneficially regulates gene expression under stress-induced conditions in skin cells. This synergy presents a novel and effective approach to enhance skin health and counteract the detrimental impacts of stress, offering a promising avenue for the development of advanced dermatological treatments.

FullText HTML FullText PDF DOI: 10.37871/jbres2086


Certificate of Publication




Copyright

© 2025 Jiang F and Liu Z. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Jiang F, Liu Z. Synergy of Ergothioneine and Tyrosine-Arginine Peptide to boost β-Endorphin Generation to Alleviate Stress-Induced Dermatological Disorders. J Biomed Res Environ Sci. 2025 Apr 09; 6(4): 312- 319. doi: 10.37871/jbres2086, Article ID: JBRES2086, Available at: https://www.jelsciences.com/articles/jbres2086.pdf


Subject area(s)

References


  1. Hall JM, Cruser D, Podawiltz A, Mummert DI, Jones H, Mummert ME. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis. Dermatol Res Pract. 2012;2012:403908. doi: 10.1155/2012/403908. Epub 2012 Aug 30. PMID: 22969795; PMCID: PMC3437281.
  2. Maarouf M, Maarouf CL, Yosipovitch G, Shi VY. The impact of stress on epidermal barrier function: an evidence-based review. Br J Dermatol. 2019 Dec;181(6):1129-1137. doi: 10.1111/bjd.17605. Epub 2019 Mar 18. PMID: 30614527.
  3. Padgett DA, Marucha PT, Sheridan JF. Restraint stress slows cutaneous wound healing in mice. Brain Behav Immun. 1998 Mar;12(1):64-73. doi: 10.1006/brbi.1997.0512. PMID: 9570862.
  4. Choe SJ, Kim D, Kim EJ, Ahn JS, Choi EJ, Son ED, Lee TR, Choi EH. Psychological Stress Deteriorates Skin Barrier Function by Activating 11β-Hydroxysteroid Dehydrogenase 1 and the HPA Axis. Sci Rep. 2018 Apr 20;8(1):6334. doi: 10.1038/s41598-018-24653-z. PMID: 29679067; PMCID: PMC5910426.
  5. Pondeljak N, Lugović-Mihić L. Stress-induced Interaction of Skin Immune Cells, Hormones, and Neurotransmitters. Clin Ther. 2020 May;42(5):757-770. doi: 10.1016/j.clinthera.2020.03.008. Epub 2020 Apr 7. PMID: 32276734.
  6. Christian LM, Graham JE, Padgett DA, Glaser R, Kiecolt-Glaser JK. Stress and wound healing. Neuroimmunomodulation. 2006;13(5-6):337-46. doi: 10.1159/000104862. Epub 2007 Aug 6. PMID: 17709956; PMCID: PMC2792763.
  7. Jiang B, Cui L, Zi Y, Jia Y, He C. Skin surface lipid differences in sensitive skin caused by psychological stress and distinguished by support vector machine. J Cosmet Dermatol. 2019 Aug;18(4):1121-1127. doi: 10.1111/jocd.12793. Epub 2018 Oct 2. PMID: 30280473.
  8. Wang AS, Armstrong EJ, Armstrong AW. Corticosteroids and wound healing: clinical considerations in the perioperative period. Am J Surg. 2013 Sep;206(3):410-7. doi: 10.1016/j.amjsurg.2012.11.018. Epub 2013 Jun 4. PMID: 23759697.
  9. Ebrecht M, Hextall J, Kirtley LG, Taylor A, Dyson M, Weinman J. Perceived stress and cortisol levels predict speed of wound healing in healthy male adults. Psychoneuroendocrinology. 2004 Jul;29(6):798-809. doi: 10.1016/S0306-4530(03)00144-6. PMID: 15110929.
  10. Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int. 2010 Dec 15;203(1-3):93-8. doi: 10.1016/j.forsciint.2010.07.004. Epub 2010 Aug 23. PMID: 20739128.
  11. Schoepe S, Schäcke H, May E, Asadullah K. Glucocorticoid therapy-induced skin atrophy. Exp Dermatol. 2006 Jun;15(6):406-20. doi: 10.1111/j.0906-6705.2006.00435.x. PMID: 16689857.
  12. Bigliardi-Qi M, Sumanovski LT, Büchner S, Rufli T, Bigliardi PL. Mu-opiate receptor and Beta-endorphin expression in nerve endings and keratinocytes in human skin. Dermatology. 2004;209(3):183-9. doi: 10.1159/000079887. PMID: 15459530.
  13. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013 Dec;34(6):827-84. doi: 10.1210/er.2012-1092. Epub 2013 Aug 12. PMID: 23939821; PMCID: PMC3857130.
  14. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000 Jul;80(3):979-1020. doi: 10.1152/physrev.2000.80.3.979. PMID: 10893429.
  15. Dieamant Gde C, Velazquez Pereda Mdel C, Eberlin S, Nogueira C, Werka RM, Queiroz ML. Neuroimmunomodulatory compound for sensitive skin care: in vitro and clinical assessment. J Cosmet Dermatol. 2008 Jun;7(2):112-9. doi: 10.1111/j.1473-2165.2008.00373.x. PMID: 18482014.
  16. Kim HS, Kim HJ, Hong YD, Son ED, Cho SY. β-endorphin suppresses ultraviolet B irradiation-induced epidermal barrier damage by regulating inflammation-dependent mTORC1 signaling. Sci Rep. 2023 Dec 15;13(1):22357. doi: 10.1038/s41598-023-49886-5. PMID: 38102220; PMCID: PMC10724221.
  17. Huang JH, Li Y, Zhang S, Zou Y, Zheng QW, Lin JF, Guo LQ. Amelioration effect of water extract from Ganoderma resinaceum FQ23 solid-state fermentation fungal substance with high-yield ergothioneine on anxiety-like insomnia mice. Food Funct. 2022 Dec 13;13(24):12925-12937. doi: 10.1039/d2fo01847k. PMID: 36445290.
  18. Yardman-Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp Dermatol. 2021 Apr;30(4):560-571. doi: 10.1111/exd.14260. Epub 2020 Dec 24. PMID: 33320376; PMCID: PMC8218595.
  19. Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013 May;1830(5):3289-303. doi: 10.1016/j.bbagen.2012.11.020. Epub 2012 Nov 29. PMID: 23201771.
  20. Mieyal JJ, Chock PB. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation. Antioxid Redox Signal. 2012 Mar 15;16(6):471-5. doi: 10.1089/ars.2011.4454. Epub 2012 Jan 4. PMID: 22136616; PMCID: PMC3270050.
  21. Allen EM, Mieyal JJ. Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63. doi: 10.1089/ars.2012.4644. Epub 2012 Jun 5. PMID: 22530666; PMCID: PMC3474186.
  22. Wu S, Szilagyi A, Zhang Y. Improving protein structure prediction using multiple sequence-based contact predictions. Structure. 2011 Aug 10;19(8):1182-91. doi: 10.1016/j.str.2011.05.004. PMID: 21827953; PMCID: PMC3154634.
  23. Albers I, Zernickel E, Stern M, Broja M, Busch HL, Heiss C, Grotheer V, Windolf J, Suschek CV. Blue light (λ=453 nm) nitric oxide dependently induces β-endorphin production of human skin keratinocytes in-vitro and increases systemic β-endorphin levels in humans in-vivo. Free Radic Biol Med. 2019 Dec;145:78-86. doi: 10.1016/j.freeradbiomed.2019.09.022. Epub 2019 Sep 22. PMID: 31553937.
  24. Rajapakse NW, Mattson DL. Role of L-arginine in nitric oxide production in health and hypertension. Clin Exp Pharmacol Physiol. 2009 Mar;36(3):249-55. doi: 10.1111/j.1440-1681.2008.05123.x. Epub 2008 Nov 28. PMID: 19076168.
  25. Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev. 2024 Jan;93:102145. doi: 10.1016/j.arr.2023.102145. Epub 2023 Nov 28. PMID: 38030089.
  26. Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta. 2012 May;1822(5):784-93. doi: 10.1016/j.bbadis.2011.09.017. Epub 2011 Oct 4. PMID: 22001064.
  27. Singh B, Schoeb TR, Bajpai P, Slominski A, Singh KK. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function. Cell Death Dis. 2018 Jul 20;9(7):735. doi: 10.1038/s41419-018-0765-9. PMID: 30026579; PMCID: PMC6053453.
  28. Moretti-Horten DN, Peselj C, Taskin AA, Myketin L, Schulte U, Einsle O, Drepper F, Luzarowski M, Vögtle FN. Synchronized assembly of the oxidative phosphorylation system controls mitochondrial respiration in yeast. Dev Cell. 2024 Apr 22;59(8):1043-1057.e8. doi: 10.1016/j.devcel.2024.02.011. Epub 2024 Mar 19. PMID: 38508182.
  29. D'Onofrio N, Martino E, Balestrieri A, Mele L, Cautela D, Castaldo D, Balestrieri ML. Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett. 2022 May;596(10):1313-1329. doi: 10.1002/1873-3468.14310. Epub 2022 Feb 14. PMID: 35122251.
  30. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011 Nov 25;334(6059):1081-6. doi: 10.1126/science.1209038. PMID: 22116877.
  31. Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci. 2022 Aug;47(8):645-659. doi: 10.1016/j.tibs.2022.03.008. Epub 2022 Apr 6. PMID: 35397926.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search