Vibha Bhardwaj*
Volume6-Issue2
Dates: Received: 2025-02-13 | Accepted: 2025-02-27 | Published: 2025-02-28
Pages: 204-211
Abstract
Introduction: Increasing demand for food due to rapidly increase in global population, it is necessary to meet the food requirements without degrading the environment. In cultivated zones, around highly populated areas, there is excessive use of fertilizers. There is a requirement to opt for natural or biological fertilizers to substitute the chemical fertilizers, due to the increasing demand for agriculture sustainability. Microbial Inoculants could be effective for crop production improvement without negative effects on the environment.
Objective: The present study focuses on the efficacy and utilization of Bacillus subtilis (ATCC 6633) and Pseudomonas sp. (ATCC 27853) as microbial inoculant to analyse the growth rate and of mustard (Brassica nigra) and carom seeds (Trachyspermum ammi) and compare with untreated seeds. Bacterial culture in the form of seed treatment and foliar spray were used as microbial Inoculant for the growth of plant.
Results and Discussion: The major seed treatment effect was observed with Bacillus subtilis that showed antifungal activity against phytopathogens. Initially, faster germination percentage was found with the carom seeds with seed treatment showed the best results, with 90% and 82% in 3 days compared to the untreated seeds and mustard seeds. Mustard Seeds treated with Bacillus subtilis showed faster plant growth rate after sowing in terms of increase in shoot length 11.6cm, 13.2 cm and root length 2.3cm, respectively, after 20 days. Spraying treatment resulted in shoot length 6.2 cm and root length 1.4cm, respectively, higher than compared to the control.
Conclusion: Bacillus subtilis ATCC 6633 and Pseudomonas sp. (ATCC 27853) microbial inoculum can be used as Microbial Inoculants, and they could act as an environmental-friendly and economical alternative to synthetic liquid fertilizer for promoting sustainable agriculture.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2073
Certificate of Publication

Copyright
© 2025 Bhardwaj V. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Bhardwaj V. Microbial Inoculant: A Potential and Sustainable way for Improvement and Production of Crops for Agricultural Sector Development. J Biomed Res Environ Sci. 2025 Feb 28; 6(2): 204-211. doi: 10.37871/jbres2073, Article ID: JBRES2073, Available at: https://www.jelsciences.com/articles/jbres2073.pdf
Subject area(s)
References
- Tsotetsi T, Nephali L, Malebe M, Tugizimana F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? Plants (Basel). 2022 Sep 22;11(19):2482. doi: 10.3390/plants11192482. PMID: 36235347; PMCID: PMC9571655.
- Sammauria S, Kumawat S, Kumawat P, Singh J, Jatwa TK. Microbial inoculants: Potential tool for sustainability of agricultural production systems. Arch Microbiol. 2020;202:677–693. doi: 10.1007/s00203-019-01795-w.
- Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ Reddy MS, El Enshasy H. Plant growth Promoting Rhizobacteria (PGPR) as green microbial inoculants: Recent developments, constraints, and prospects. Sustainability. 2021;13:1140. doi: 10.3390/su13031140.
- Michalak I, Chojnacka K, Saeid A. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO₂ Algal Extracts. Molecules. 2017 Jan 3;22(1):66. doi: 10.3390/molecules22010066. PMID: 28054954; PMCID: PMC6155630.
- Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. 2020 Jun;128(6):1583-1594. doi: 10.1111/jam.14506. Epub 2019 Nov 21. PMID: 31705597.
- Kaspar F, Neubauer P, Gimpel M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. J Nat Prod. 2019 Jul 26;82(7):2038-2053. doi: 10.1021/acs.jnatprod.9b00110. Epub 2019 Jul 9. PMID: 31287310.
- Tran C, Cock IE, Chen X, Feng Y. Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel). 2022 Jan 12;11(1):88. doi: 10.3390/antibiotics11010088. PMID: 35052965; PMCID: PMC8772736.
- Zhang L, Chen W, Jiang Q, Fei Z, Xiao M. Genome analysis of plant growth-promoting rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca JD37 and insights from comparasion of genomics with three Pseudomonas strains. Microbiol Res. 2020 Aug;237:126483. doi: 10.1016/j.micres.2020.126483. Epub 2020 May 1. PMID: 32402945.
- Zhuang L, Li Y, Wang Z, Yu Y, Zhang N, Yang C, Zeng Q, Wang Q. Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth. Microb Biotechnol. 2021 Mar;14(2):488-502. doi: 10.1111/1751-7915.13640. Epub 2020 Aug 6. PMID: 32762153; PMCID: PMC7936309.
- Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A. 2008 May 27;105(21):7564-9. doi: 10.1073/pnas.0801093105. Epub 2008 May 21. PMID: 18495935; PMCID: PMC2396677.
- Costa-Gutierrez SB, Lami MJ, Santo MCC, Zenoff AM, Vincent PA, Molina-Henares MA, Espinosa-Urgel M, de Cristóbal RE. Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol. 2020 May;104(10):4577-4592. doi: 10.1007/s00253-020-10516-z. Epub 2020 Mar 27. PMID: 32221691.
- Sah S, Krishnani S, Singh R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr Res Microb Sci. 2021 Nov 24;2:100084. doi: 10.1016/j.crmicr.2021.100084. PMID: 34917993; PMCID: PMC8645841.
- Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019 Sep;26(6):1291-1297. doi: 10.1016/j.sjbs.2019.05.004. Epub 2019 May 20. PMID: 31516360; PMCID: PMC6734152.
- Warrior P. Living systems as natural crop-protection agents. Pest Manage Sci Formerly Pest Sci. 2000;56(8):681–687. doi: 10.1002/1526-4998(200008)56:8%3C681::AID-PS199%3E3.0.CO;2-S.
- Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJ, Vicente Ad, Bloemberg G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol. 2007 Nov;103(5):1950-9. doi: 10.1111/j.1365-2672.2007.03433.x. PMID: 17953605.
- Bhardwaj V. Antimicrobial Potential of Cocos nucifera (Coconut) Oil on Bacterial Isolates. Adv Exp Med Biol. 2023 Aug 19. doi: 10.1007/5584_2023_786. Epub ahead of print. PMID: 37594604.
- Marti L. Effect of saninity and temperature on seed germination of linonium mansaltrarum. 2010. doi: 10.1139/cjb-2012-0157.
- Araya E, Gómez L, Hidalgo N, Valverde R. Efecto de la luz y del ácido giberélico sobre la germinación in vitro de (Alunus Acuminata). Agron. Costarric. 2000;24:75-80.
- Viteri ML, Ghezán G, Iglesias D. Tomato and lettuce production marketing and comsumption. Estud Socioeconómico De Los Sist: INTA Balcarce Argentina. 2013;14:185-190. doi: 10.3390/su152115406.
- Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A. Microalgal biostimulants and biofertilisers in crop productions. Agron J. 2019;9(4):146-163. doi: 10.3390/agronomy9040192.
- Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, Fornasier F. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol. 2018;30(2):1061-1071. doi: 10.1007/s10811-017-1283-3.
- Kumar G, Sahoo D, Effect of seaweed liquid extract on growth and yield of Triticum aestivum var Pusa Gold. J Appl. Phycol. 2011;23(2):251-255. doi: 10.1007/s10811-011-9660-9.
- Garcia-Gonzalez J, Sommerfeld M. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol. 2016;28:1051-1061. doi: 10.1007/s10811-015-0625-2. Epub 2015 May 29. PMID: 27057088; PMCID: PMC4789255.
- Ibrahim WM. Potential impact of marine algal extracts on the growth and metabolic activities of salinity stressed wheat seedlings. J Appl Sci. 2016;16(8):388-394. doi: 10.3923/jas.2016.388.394.
- Hernandez-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-Lopez MA, Norrie J, Hernandez-Carmona G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol. 2014;26(1):619–628. doi: 10.1007/s10811-013-0078-4.
- Win TT, Barone GD, Secundo F, Fu P. Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol. 2018;14(4):203-211. doi: 10.1089/ind.2018.0010.
- Battacharyya D, Zamani Babgohari M, Rathor P, Prithiviraj B. (2015). Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015;196:39-48. doi: 10.1016/j.scienta.2015.09.012.
- Plaza BM, Gomez-Serrano C, Acien-Fernandez FG, Jimenez-Becker S. Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J Appl Phycol. 2018;30(4):2359-2365. doi: 10.1007/s10811-018-1427-0.
- Shaaban MM. Green microalgae water extract as foliar feeding to wheat plants. Pak J Biol Sci. 2001;4(6):628-632. doi: 10.3923/pjbs.2001.628.632.
- Shaaban MM, El-Saady AKM, El-Sayed AEB. Green microalgae water extract and micronutrients foliar application as promoters to nutrient balance and growth of wheat plants. J Am Sci. 2010;6(9):631-636. doi: 10.3923/pjbs.2001.628.632.
- Elansary HO, Yessoufou K, Shokralla S, Mahmoud EA, Skalicka-Woźniak K. Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crops Prod. 2016;92:50-56. doi: 10.1016/j.indcrop.2016.07.048.