Covid-19 Research

Perspective

OCLC Number/Unique Identifier:

Tissue Analysis of the Vocal Folds Cellular and Biochemical Aspects

Medicine Group    Start Submission

Mette Pedersen*

Volume6-Issue2
Dates: Received: 2025-01-28 | Accepted: 2025-02-17 | Published: 2025-02-18
Pages: 153-156

Abstract

The vocal folds are pivotal in human communication, functioning as the primary tone generator of the body. This study investigates advancements in the evaluation of vocal fold functionality through voice-related biomarkers with clinically validated methods, such as basic acoustic measures, Maximum Phonation Time (MPT), the Voice Handicap Index (VHI), and the GRBAS scale. They provide structured frameworks for assessing vocal fold states. Research on genetic regulation of fundamental frequency highlights the significance of integrating genomic and biochemical data to understand vocal fold function and development. Despite advancements in the understanding of many tissue components like elastin and fibrinogen, clinical applications for pathologies of the vocal folds such as multi-handicap syndromes and neurodegenerative disorders remain limited. Regular biopsy changes the function of the vocal folds and cannot be carried out in vivo.

Environmental factors, such as radiation exposure, impact vocal folds and are badly understood. Studies on pubertal individuals from Chornobyl revealed reduced pitch range and intensity. Optical Coherence Tomography (OCT) has emerged as an optical biopsy. It is a tool for visualizing tissue and eventual abnormalities, offering significant potential in evaluating hormonal tissue effects, and biochemical properties in defined in vivo situations. Biochemical understanding of medical treatments for tissue-specific abnormalities, such as genetic and hormonal imbalances, are underexplored.

This article underscores the necessity of an interdisciplinary approach to vocal fold understanding, integrating biochemical research with clinical practice, that includes among others OCT and defined voice-related biomarkers. This integration is crucial for addressing gaps in diagnostics and treatment, ultimately improving outcomes in managing e.g. hormonal, genetic, neurodegenerative, and environmentally induced voice disorders.

FullText HTML FullText PDF DOI: 10.37871/jbres2067


Certificate of Publication




Copyright

© 2025 Pedersen M. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Pedersen M. Tissue Analysis of the Vocal Folds Cellular and Biochemical Aspects. J Biomed Res Environ Sci. 2025 Feb 18; 6(1): 153-156. doi: 10.37871/jbres2067, Article ID: JBRES2067, Available at: https://www.jelsciences.com/articles/jbres2067.pdf


Subject area(s)

References


  1. Lechien JR, Geneid A, Bohlender JE, Cantarella G, Avellaneda JC, Desuter G, Sjogren EV, Finck C, Hans S, Hess M, Oguz H, Remacle MJ, Schneider-Stickler B, Tedla M, Schindler A, Vilaseca I, Zabrodsky M, Dikkers FG, Crevier-Buchman L. Consensus for voice quality assessment in clinical practice: guidelines of the European Laryngological Society and Union of the European Phoniatricians. Eur Arch Otorhinolaryngol. 2023 Dec;280(12):5459-5473. doi: 10.1007/s00405-023-08211-6. Epub 2023 Sep 14. PMID: 37707614.
  2. Jacobson B, Johnson FA, Grywalski C, Silbergleit A, Jacobson G, Benninger MS, Newman CW. The Voice Handicap Index (VHI): Development and validation. AJSLP. 1997;6(3):66-70 doi: 10.1044/1058-0360.0603.66.
  3. De Bodt MS, Wuyts FL, Van de Heyning PH, Croux C. Test-retest study of the GRBAS scale: influence of experience and professional background on perceptual rating of voice quality. J Voice. 1997 Mar;11(1):74-80. doi: 10.1016/s0892-1997(97)80026-4. PMID: 9075179.
  4. Pedersen M. Artificial intelligence for screening voice disorders: Aspects of risk factors. AJMCRR. 2025;4(2):1-8. doi: 10.58372/2835-6276.1254.
  5. Wei W, Choi WJ, Men S, Song S, Wang R. Wide-field and long-ranging-depth optical coherence tomography microangiography of human oral mucosa (Conference Presentation). Proceedings of SPIE. 2018. doi: 10.1117/12.2290685.
  6. Gisladottir RS, Helgason A, Halldorsson BV, Helgason H, Borsky M, Chien YR, Gudnason J, Gudjonsson SA, Moisik S, Dediu D, Thorleifsson G, Tragante V, Bustamante M, Jonsdottir GA, Stefansdottir L, Rutsdottir G, Magnusson SH, Hardarson M, Ferkingstad E, Halldorsson GH, Rognvaldsson S, Skuladottir A, Ivarsdottir EV, Norddahl G, Thorgeirsson G, Jonsdottir I, Ulfarsson MO, Holm H, Stefansson H, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Sequence variants affecting voice pitch in humans. Sci Adv. 2023 Jun 9;9(23):eabq2969. doi: 10.1126/sciadv.abq2969. Epub 2023 Jun 9. PMID: 37294764; PMCID: PMC10256171.
  7. Pedersen M. Normal development of voice. 2024. doi: 10.1007/978-3-031-42391-8.
  8. Pedersen M, Dinnesen A, Mahmood S. Genetic background of voice disorders and genetic perspectives in voice treatment. In: Phoniatrics I, fundamentals, voice disorders, disorders of language and hearing development. 2019. p.225-230.
  9. Calà F, Frassineti L, Sforza E, Onesimo R, D'Alatri L, Manfredi C, Lanata A, Zampino G. Artificial Intelligence Procedure for the Screening of Genetic Syndromes Based on Voice Characteristics. Bioengineering (Basel). 2023 Nov 29;10(12):1375. doi: 10.3390/bioengineering10121375. PMID: 38135966; PMCID: PMC10741055.
  10. Pelka F, Ensthaler M, Wendler O, Kniesburges S, Schützenberger A, Semmler M. Mechanical Parameters Based on High-Speed Videoendoscopy of the Vocal Folds in Patients With Ectodermal Dysplasia. J Voice. 2023 Mar 25:S0892-1997(23)00084-X. doi: 10.1016/j.jvoice.2023.02.027. Epub ahead of print. PMID: 36973131.
  11. Frassineti L, Calà F, Sforza E, Onesimo R, Leoni C, Lanatà A, Zampino G, Manfredi C. Quantitative acoustical analysis of genetic syndromes in the number listing task. Biomedical Signal Processing and Control. 2023;85(4):104887. doi: 10.1016/j.bspc.2023.104887.
  12. Pedersen MF. Stimmfunktion vor und nach behandlung von hirngeschädigten. Mit Stroboskopie, Phonetographie und Luftstromanalyse durchgefürht. Sprache, Stimme, Gehöhr. 1995.
  13. Pedersen M, Christensen AL. A study of phonetograms in young brain-damaged people. Proc XXIInd Congress of the International Association of Logopedics and Phoniatrics. 1992.
  14. Krushevskaja I, Pedersen M. A pilot study of radiated voices in Chernobyl. Proc XXIIth Congress of the International Association of Logopedics and Phoniatrics. 1992.
  15. Villari CR, Courey MS. Management of Dysphonia After Radiation Therapy. Otolaryngol Clin North Am. 2015 Aug;48(4):601-9. doi: 10.1016/j.otc.2015.04.006. Epub 2015 Jun 17. PMID: 26092762.
  16. Israelsen NM, Jensen M, Jønsson AO, Pedersen M. Ultrahigh resolution optical coherence tomography for detecting tissue abnormalities of the oral and laryngeal mucosa: A preliminary study. MAVEBA Proceedings. 2019;195-197.
  17. Thiboutot J, Yuan W, Park HC, Li D, Loube J, Mitzner W, Yarmus L, Li X, Brown RH. Visualization and Validation of The Microstructures in The Airway Wall in vivo Using Diffractive Optical Coherence Tomography. Acad Radiol. 2022 Nov;29(11):1623-1630. doi: 10.1016/j.acra.2022.01.008. Epub 2022 Mar 10. PMID: 35282990; PMCID: PMC9463401.
  18. Leichtle A, Penxova Z, Kempin T, Leffers D, Ahrens M, König P, Brinkmann R, Hüttmann G, Bruchhage KL, Schulz-Hildebrandt H. Dynamic microscopic optical coherence tomography as a new diagnostic tool for otitis media. Photonics. 2023;10(6):685. doi: 10.3390/photonics10060685.
  19. Sharma GK, Chen LY, Chou L, Badger C, Hong E, Rangarajan S, Chang TH, Armstrong WB, Verma SP, Chen Z, Ramalingam R, Wong BJ. Surface kinematic and depth-resolved analysis of human vocal folds in vivo during phonation using optical coherence tomography. J Biomed Opt. 2021 Aug;26(8):086005. doi: 10.1117/1.JBO.26.8.086005. PMID: 34414705; PMCID: PMC8374544.
  20. Meller A, Shakhova M, Rilkin Y, Novozhilov A, Kirillin M, Shakhov A. Optical coherence tomography in diagnosing inflammatory diseases of ENT. Photonics and Lasers in Medicine. 2014;3(4). doi: 10.1515/plm-2014-0025.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search