Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Use of Thienopyrimidine Derivatives to Optimize Sorghum Growth and Photosynthesis during the Vegetation Period

Biology Group    Start Submission

Tsygankova VA*, Vasylenko NM, Andrusevich YaV, Kopich VM, Kachaeva MV, Popilnichenko SV, Pilyo SG and Brovarets VS

Volume6-Issue1
Dates: Received: 2025-01-13 | Accepted: 2025-01-22 | Published: 2025-01-24
Pages: 071-080

Abstract

This study is aimed at screening new auxin- and cytokinin-like substances among chemical low-molecular-weight nitrogen-containing heterocyclic compounds, derivatives of thienopyrimidine, to improve growth and enhance photosynthesis of an important agricultural crop - grain sorghum (Sorghum bicolor L.) variety Odeske 202 during the vegetation period. A comparative analysis of the morphometric parameters of sorghum plants, as well as the content of photosynthetic pigments in sorghum plants treated with auxin IAA (1H-indol-3-yl)acetic acid or chemical low-molecular-weight nitrogen-containing heterocyclic compounds, derivatives of sodium salt and potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine (Methyur and Kamethur) or new compounds, thienopyrimidine derivatives at a concentration of 10-7M was carried out. As a result of the screening, the most physiologically active compounds among thienopyrimidine derivatives were identified, which promote growth and intensification of photosynthesis in sorghum plants, and the relationship between their chemical structure and regulatory effect was analyzed. Based on the obtained results, the practical use of selected compounds, derivatives of thienopyrimidine, as new effective plant growth regulators for improving growth and increasing photosynthesis of sorghum plants during the vegetation period is proposed.

FullText HTML FullText PDF DOI: 10.37871/jbres2057


Certificate of Publication




Copyright

© 2025 Tsygankova VA, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Tsygankova VA, Vasylenko NM, Andrusevich YaV, Kopich VM, Kachaeva MV, Popilnichenko SV, Pilyo SG, Brovarets VS. Use of Thienopyrimidine Derivatives to Optimize Sorghum Growth and Photosynthesis during the Vegetation Period. J Biomed Res Environ Sci. 2025 Jan 24; 6(1): 070-081. doi: 10.37871/jbres2057, Article ID: JBRES2057, Available at: https://www.jelsciences.com/articles/jbres2057.pdf


Subject area(s)

References


  1. Growth and Production of Sorghum and Millets. Soils, Plant Growth and Crop Production. Verheye, Willy H, editors. EOLSS Publishers; Volume 2. 2010.
  2. Borrell AK, van Oosterom EJ, Mullet JE, George-Jaeggli B, Jordan DR, Klein PE, Hammer GL. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol. 2014 Aug;203(3):817-30. doi: 10.1111/nph.12869. Epub 2014 Jun 4. PMID: 24898064.
  3. Curti MI, Palavecino PM, Savio M, Baroni MV, Ribotta PD. Sorghum (Sorghum bicolor L. Moench) Gluten-Free Bread: The Effect of Milling Conditions on the Technological Properties and In Vitro Bioaccessibility of Polyphenols and Minerals. Foods. 2023 Aug 12;12(16):3030. doi: 10.3390/foods12163030. PMID: 37628029; PMCID: PMC10453239.
  4. Han LP, Wang X, Guo X, Rao MS, Steinberger Y, Cheng X, Xie GX. Effects of plant growth regulators on growth, yield and lodging of sweet sorghum. Res on Crops. 2011;12(2):372-382.
  5. Huang J, Shrestha K, Huang Y. Revealing Differential Expression of Phytohormones in Sorghum in Response to Aphid Attack Using the Metabolomics Approach. Int J Mol Sci. 2022 Nov 9;23(22):13782. doi: 10.3390/ijms232213782. PMID: 36430259; PMCID: PMC9699302.
  6. Lone R, Hassan N, Bashir B, Rohela GK, Malla NA. Role of growth elicitors and microbes in stress management and sustainable production of Sorghum. Plant Stress. 2023;9:100179. doi: 10.1016/j.stress.2023.100179.
  7. Nimir EAN, Zhou G, Zhu G, Ibrahim ME. Response of some sorghum varieties to GA3 concentrations under different salt compositions. Chilean Journal of Agricultural Research. 2020;80(4):478:486. doi: 10.4067/S0718-58392020000400478.
  8. Macedo WR, Araújo DK, Santos VM, de Camargo e Castro PR, Fernandes GM. Plant growth regulators on sweet sorghum: physiological and nutritional value analysis. Comunicata Scientiae. 2017;8(1):170-175. doi: 10.14295/CS.v8i1.1315.
  9. Pravdyva L, Zatserkovna N, Vakhniy S, Khakhula V, Hornovska S. Photosynthetic productivity of sorghum (Sorghum bicolor L. (Moenh) in the conditions of the Right-Bank Forest-Steppe of Ukraine. Scientific Horizons. 2023;26(5):56-64. doi: 10.48077/scihor5.2023.56.
  10. Msongaleli B, Rwehumbiza F, Tumbo S, Kihupi N. Sorghum yield response to changing climatic conditions in semi-arid central Tanzania: Evaluating crop simulation model applicability. Agricultural Sciences. 2014;5:822-833. doi: 10.4236/as.2014.510087.
  11. Ondiko JH, Rech CW. Global sorghum production constraints: A review. Annals of Arid Zone. 2022;61(1):1-12.
  12. Tsygankova VA, Brovarets VS, Yemets AI, Blume YB. Prospects of the development in Ukraine of the newest plant growth regulators based on low molecular heterocyclic compounds of the azole, azine and their condensed derivatives. In Book: Synthesis and bioactivity of functionalized nitrogen-containing heterocycles / Eds. A.I. Vovk. Kyiv: Interservice, 2021. p.246-285.
  13. Tsygankova VA, Andrusevich Ya V, Shtompel OI, Solomyanny RM, Hurenko AO, Frasinyuk MS, Mrug GP, Shablykin OV, Pilyo SG, Kornienko AM, Brovarets VS. New auxin and cytokinin related compounds based on synthetic low molecular weight heterocycles. Chapter 16, In: Aftab T. Editor. Auxins, cytokinins and gibberellins signaling in plants. Signalling and communication in plants. Springer Nature Switzerland AG. 2022;353-377. doi: 10.1007/978-3-031-05427-3_16.
  14. Ota C, Kumata S, Kawaguchi S. Novel herbicides, usage thereof, novel thienopyrimidine derivatives, intermediates of the same, and process for production thereof. Patent US20070010402A1. 2007.
  15. Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. Pestic Biochem Physiol. 2021 Feb;172:104766. doi: 10.1016/j.pestbp.2020.104766. Epub 2020 Dec 25. PMID: 33518053.
  16. Cansev A, Gülen H, Zengin MK, Ergin S, Cansev M. Use of pyrimidines in stimulation of plant growth and development and enhancement of stress tolerance. WIPO Patent WO 2014/129996A1. 2014.
  17. Boussemghoune MA,Whittingham WG, Winn CL, Glithro H, Aspinall MB. Pyrimidine derivatives and their use as herbicides. Patent US20120053053 A1. 2012.
  18. Tsygankova VA, Andrysevich YV, Shtompel OI, Kopich VM, Kluchko SV, Brovaretz VS. Using Pyrimidine Derivatives - Sodium Salt of Methyur and Potassium Salt of Methyur, to Intensify the Growth of Corn. Patent of Ukraine 130921. 2018.
  19. Tsygankova VA, Andrysevich YV, Shtompel OI, Kopich VM, Kluchko SV, Brovaretz VS. The method of intensifying the growth of corn plants using Methyur potassium salt. Patent of Ukraine 123222. 2021.
  20. Tsygankova VA, Oliynyk OO, KvaskoO Yu, Pilyo SG, Klyuchko SV, Brovarets VS. Ef-fect of plant growth regulators ivin, methyur and kamethur on the organogenesis of miniature rose (Rosa mini L.) In vitro. Int J Med Biotechnol Genetics. 2022;1-8.
  21. Pidlisnyuk V, Mamirova A, Newton RA, Stefanovska T, Zhukov O, Tsygankova V, Shapoval P. The role of plant growth regulators in Miscanthus × giganteus utilisation on soils contaminated with trace elements. Agronomy. 2022;12(12):2999. doi: 10.3390/agronomy12122999.
  22. Tsygankova VA, Voloshchuk IV, Kopich VM, Pilyo SG, Klyuchko SV, Brovarets VS. Studying the effect of plant growth regulators Ivin, Methyur and Kamethur on growth and productivity of sunflower. Journal of Advances in Agriculture. 2023;14:17:24. doi: 10.24297/jaa.v14i.9453.
  23. Tsygankova VA, Voloshchuk IV, Pilyo SH, Klyuchko SV, Brovarets vs., Enhancing sorghum productivity with methyur, kamethur, and ivin plant growth regulators. Biology and Life Sciences Forum. 2023;27(1):36. doi: 10.3390/IECAG2023-15222.
  24. Tsygankova VA, Kopich VM, Vasylenko NM, Golovchenko OV, Pilyo SG, Malienko MV, Brovarets VS. Increasing the productivity of wheat using synthetic plant growth regulators Methyur, Kamethur and Ivin. Znanstvena misel journal. 2024;94:22-26. doi: 10.5281/zenodo.13860706.
  25. Tsygankova VA, Bayer OO, Andrusevich Ya V, Galkin AP, Brovarets VS, Yemets AI, Blume Ya B. Screening of five and six-membered nitrogen-containing heterocyclic compounds as new effective stimulants of Linum usitatissimum L. organogenesis in vitro. Int J Med Biotechnol Genetics. 2016;02(1):1-9. doi: 10.19070/2379-1020-SI02001.
  26. Tsygankova VA, Andrusevich Ya V, Shtompel OI, Kopich VM, Solomyanny RM, Brovarets VS. Study of regulating activity of synthetic low molecular weight heterocyclic compounds, derivatives of pyrimidine on growth of tomato (Solanum lycopersicum L.) seedlings. International Journal of ChemTech Research. 2019;12(5):26-38. doi: 10.20902/IJCTR.2019.120504.
  27. Mohilnikova IV, Tsygankova VA, Solomyannyi RM, Brovarets VS, Bilko NМ, Yemets АІ. Screening of growth-stimulating activity of synthetic compounds - pyrimidine derivatives. Reports of the National Academy of Sciences of Ukraine. 2020;10:62-70. doi: 10.15407/dopovidi2020.10.062.
  28. Tsygankova VA, Kopich VM, Voloshchuk IV, Pilyo SG, Klyuchko SV, Brovarets VS. New growth regulators of barley based on pyrimidine and pyridine derivatives. Sciences of Europe. 2023;124:13-23. doi: 10.5281/zenodo.8327852.
  29. Tsygankova VA, Andrusevich Ya V, Kopich VM, Voloshchuk IV, Bondarenko OM, Pilyo SG, Klyuchko SV, Brovarets VS. Effect of pyrimidine and pyridine derivatives on the growth and photosynthesis of pea microgreens. Int J Med Biotechnol Genetics. 2023;15-22.
  30. Tsygankova VA, Andrusevich Ya V, Kopich VM, Voloshchuk IV, Pilyo SG, Klyuchko SV, Brovarets VS. Application of pyrimidine and pyridine derivatives for regulation of chickpea (Cicer arietinum L.) growth. International Journal of Innovative Science and Research Technology (IJISRT). 2023;8(6):19-28. doi: 10.5281/zenodo.8020671.
  31. Tsygankova VA, Kopich VM, Vasylenko NM, Andrusevich Ya V, Pilyo SG, Brovarets VS. Phytohormone-like effect of pyrimidine derivatives on the vegetative growth of haricot bean (Phaseolus vulgaris L.). Polish Journal of Science. 2024;1(71):6-13. doi: 10.5281/zenodo.10675232.
  32. Tsygankova VA, Andrusevich Ya V, Vasylenko NM, Pilyo SG, Klyuchko SV, Brovarets VS. Screening of auxin-like substances among synthetic compounds, derivatives of pyridine and pyrimidine. J Plant Sci Phytopathol. 2023;7:151-156. doi: 10.29328/journal.jpsp.1001121.
  33. Tsygankova VA, Vasylenko NM, Andrusevich Ya V, Kopich VM, Solomyannyi RM, Pilyo SG, Bondarenko OM, Popilnichenko SV, Brovarets VS. New wheat growth regulators based on thioxopyrimidine derivatives. Int J Med Biotechnol Genetics. 2024;23-30.
  34. Tsygankova VA, Andrusevich Ya V, Vasylenko NM, Kopich VM, Pilyo SG, Solomyannyi RM, Popilnichenko SV, Bondarenko OM, Brovarets VS. The use of thioxopyrimidine derivatives for the regulation of vegetative growth of wheat. Journal of Medicinal Botany. 2024;8:1-7. doi: 10.25081/jmb.2024.v8.8918.
  35. Tsygankova VA, Andrusevich Ya V, Vasylenko NM, Kopich VM, Solomyannyi RM, Popilnichenko SV, Kozachenko OP, Pilyo SG, Brovarets VS. The use of thioxopyrimidine derivatives as new regulators of growth and photosynthesis of barley. J Plant Sci Phytopathol. 2024;8(2):090-099. doi: 10.29328/journal.jpsp.1001139.
  36. Tsygankova V, Andrusevich Ya, Kopich V, Vasylenko N, Solomyannyi R, Popilnichenko S, Kachaeva M, Kozachenko O, Pilyo S, Brovarets V. Wheat growth in the vegetative phase under the regulatory effect of furopyrimidine derivatives. The scientific heritage. 2024;140:3-12. doi: 10.5281/zenodo.12720609.
  37. Tsygankova VA, Andrusevich Ya V, Vasylenko NM, Kopich VM, Popilnichenko SV, Pilyo SG, Brovarets VS. Auxin-like and cytokinin-like effects of new synthetic pyrimidine derivatives on the growth and photosynthesis of wheat. J Plant Sci Phytopathol. 2024;8(1)-15-24. doi: 10.29328/journal.jpsp.1001126
  38. Tsygankova V, Vasylenko N, Andrusevich Ya, Kopich V, Kachaeva M, Popilnichenko S, Kozachenko O, Pilyo S, Brovarets V. Application of thienopyrimidine derivatives as new eco-friendly wheat growth regulators. Sciences of Europe. 2024;146;8:18. doi: 10.5281/zenodo.13267799.
  39. Voytsehovska OV, Kapustyan AV, Kosik OI. Plant physiology: Praktykum, Parshikova T.V. Editors. Lutsk: Teren; 2010. p.420.
  40. Biswas BK, Shin JS, Malpani YR, Hwang D, Jung E, Han SB, Vishakantegowda AG, Jung YS. Enteroviral replication inhibition by N-Alkyl triazolopyrimidinone derivatives through a non-capsid binding mode. Bioorganic & Medicinal Chemistry Letters. 2022;64:128673. doi: 10.1016/j.bmcl.2022.128673.
  41. Al-Taisan KM, Al-Hazimi HMA, Al-Shihry SS. Synthesis, Characterization and Biological Studies of Some Novel Thieno[2,3-d]pyrimidines. Molecules. 2010;15(6):3932-3957. doi: 10.3390/molecules15063932
  42. Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry (CPFA): John Wiley and Sons, New York; 2001. doi: 10.1002/0471142913.faf0403s01.
  43. Statistical methods in molecular biology. Bang H, Zhou XK, van Epps HL, Mazumdar M. Editors. Series: Methods in molecular biology, New York: Humana press; 2010;13(620):636.
  44. Guyomarc'h S, Lucas M, Laplaze L. Postembryonic Organogenesis in Plants: Experimental Induction of New Shoot and Root Organs. Methods Mol Biol. 2022;2395:79-95. doi: 10.1007/978-1-0716-1816-5_5. PMID: 34822150.
  45. Gallavotti A. The role of auxin in shaping shoot architecture. J Exp Bot. 2013 Jun;64(9):2593-608. doi: 10.1093/jxb/ert141. PMID: 23709672.
  46. Roychoudhry S, Kepinski S. Auxin in Root Development. Cold Spring Harb Perspect Biol. 2022 May 17;14(4):a039933. doi: 10.1101/cshperspect.a039933. PMID: 34312248; PMCID: PMC9121899.
  47. Zhang Q, Gong M, Xu X, Li H, Deng W. Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells. 2022 Sep 5;11(17):2761. doi: 10.3390/cells11172761. PMID: 36078168; PMCID: PMC9454831.
  48. Sosnowski J, Truba M, Vasileva V. The Impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023;13(3):724. doi: 10.3390/agriculture13030724.
  49. Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. Hortic Res. 2021;8:118:1-13. doi: 10.1038/s41438-021-00558-3.
  50. Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int J Mol Sci. 2018 Dec 14;19(12):4045. doi: 10.3390/ijms19124045. PMID: 30558142; PMCID: PMC6321018.
  51. Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. Front Plant Sci. 2021 Dec 6;12:788996. doi: 10.3389/fpls.2021.788996. PMID: 34938309; PMCID: PMC8685244.
  52. Calderon-Villalobos LI, Tan X, Zheng N, Estelle M. Auxin perception--structural insights. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a005546. doi: 10.1101/cshperspect.a005546. Epub 2010 May 26. PMID: 20504967; PMCID: PMC2890193.
  53. Rigal A, Ma Q, Robert S. Unraveling plant hormone signaling through the use of small molecules. Front Plant Sci. 2014 Jul 30;5:373. doi: 10.3389/fpls.2014.00373. PMID: 25126092; PMCID: PMC4115670.
  54. Fukui K, Hayashi KI. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. Plant Cell Physiol. 2018 Aug 1;59(8):1500-1510. doi: 10.1093/pcp/pcy076. PMID: 29668988.
  55. Hayashi KI. Chemical Biology in Auxin Research. Cold Spring Harb Perspect Biol. 2021 May 3;13(5):a040105. doi: 10.1101/cshperspect.a040105. PMID: 33431581; PMCID: PMC8091948.
  56. Tsygankova VA, Zayets VN, Galkina LA, Blume Ya B. The phytohormone-mediated action of the synthetic regulators on cell extension growth in higher plants. Biopolymers and Cell. 1999;15(5):432-441. doi: 10.7124/bc.00053B.
  57. Ricci A, Bertoletti C. Urea derivatives on the move: cytokinin-like activity and adventitious rooting enhancement depend on chemical structure. Plant Biol (Stuttg). 2009 May;11(3):262-72. doi: 10.1111/j.1438-8677.2008.00165.x. Epub 2008 Dec 15. PMID: 19470099.
  58. Desta B, Amare G. Paclobutrazol as a plant growth regulator. Chem Biol Technol Agric. 2021;8:1. doi: 10.1186/s40538-020-00199-z.
  59. Mellor N, Band LR, Pěnčík A, Novák O, Rashed A, Holman T, Wilson MH, Voß U, Bishopp A, King JR, Ljung K, Bennett MJ, Owen MR. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11022-7. doi: 10.1073/pnas.1604458113. Epub 2016 Sep 20. PMID: 27651495; PMCID: PMC5047161.
  60. Zhang J, Peer WA. Auxin homeostasis: The DAO of catabolism. Journal of Experimental Botany. 2017;68(12):3145-3154. doi: 10.1093/jxb/erx221.
  61. Hayashi KI, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun. 2021 Nov 22;12(1):6752. doi: 10.1038/s41467-021-27020-1. PMID: 34811366; PMCID: PMC8608799.
  62. Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T, Retzer K, Harant K, Novák O, Hoyerová K, Petrášek J. DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol. 2021 Sep 4;187(1):103-115. doi: 10.1093/plphys/kiab242. PMID: 34618129; PMCID: PMC8418401.
  63. Chen L, Zhao J, Song J, Jameson PE. Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol J. 2020 Mar;18(3):614-630. doi: 10.1111/pbi.13305. Epub 2019 Dec 22. Erratum in: Plant Biotechnol J. 2020 Jul;18(7):1634. doi: 10.1111/pbi.13418. PMID: 31782596; PMCID: PMC7004901.
  64. Khablak SH, Spivak SI, Pastukhova NL, Yemets AI, Blume Ya B. Cytokinin oxidase/dehydrogenase as an important target for increasing plant productivity. Cytology and Genetics. 2024;58(2):115-125. doi: 10.3103/S0095452724020051.
  65. Tan C, Li S, Song J, Zheng X, Zheng H, Xu W, Wan C, Zhang T, Bian Q, Men S. 3,4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Commun Biol. 2024 Feb 8;7(1):161. doi: 10.1038/s42003-024-05848-9. PMID: 38332111; PMCID: PMC10853179.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search