Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Cell-Free Therapy Based on Adipose Stem Cell-Derived Exosomes to Inhibit Scar Formation Proactively: Mechanisms and Clinical Targeting Applications

Biology Group    Start Submission

Xinhao Cheng, Haijiang Dong, Yu Li, Shuying Yu, Guangren Yue and Ximei Wang*

Volume6-Issue1
Dates: Received: 2024-12-08 | Accepted: 2025-01-18 | Published: 2025-01-20
Pages: 031-055

Abstract

This review provides an in-depth analysis of the potential benefits of cell-free therapy based on adipose-derived exosomes (ADSC-Exos) in inhibiting scar formation. The review highlights the advantages of using ADSC-Exos. It also explores the complex mechanisms by which ADSC-Exos inhibit scar formation, including their role in hemostasis, inflammation, cell proliferation, tissue remodeling, and their regulation of critical molecules (platelets, inflammatory factors, extracellular matrix molecules, collagen molecules) and crucial cells (macrophages, endothelial cells, fibroblasts), as well as their modulation of epithelial-mesenchymal transition. Additionally, the article examines different delivery methods and engineering approaches for optimizing the targeting of adipose stem cell-derived exosomes in traumatic scarring. It points out the potential of using liposomes to construct molecular-targeted exosomes in precision medicine. Finally, the review summarizes current research and provides insights into the future development of exosomes in scar treatment. In conclusion, this article reveals the potential of cell-free therapy based on ADSC-Exos as a promising treatment for inhibiting scar formation.

FullText HTML FullText PDF DOI: 10.37871/jbres2055


Certificate of Publication




Copyright

© 2025 Cheng X, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Cheng X, Dong H, Li Y, Yu S, Yue G, Wang X. Cell-Free Therapy Based on Adipose Stem Cell- Derived Exosomes to Inhibit Scar Formation Proactively: Mechanisms and Clinical Targeting Applications. J Biomed Res Environ Sci. 2025 Jan 20; 6(1): 031-055. doi: 10.37871/jbres2055, Article ID: JBRES2055, Available at: https:// www.jelsciences.com/articles/jbres2055.pdf


Subject area(s)

References


  1. Zhang T, Wang XF, Wang ZC, Lou D, Fang QQ, Hu YY, Zhao WY, Zhang LY, Wu LH, Tan WQ. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother. 2020 Sep;129:110287. doi: 10.1016/j.biopha.2020.110287. Epub 2020 Jun 12. PMID: 32540643.
  2. Yu J, Wang MY, Tai HC, Cheng NC. Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation. Acta Biomater. 2018 Sep 1;77:191-200. doi: 10.1016/j.actbio.2018.07.022. Epub 2018 Jul 12. PMID: 30017923.
  3. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019 Jun 20;88:487-514. doi: 10.1146/annurev-biochem-013118-111902. PMID: 31220978.
  4. Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells. 2021 Aug 1;10(8):1959. doi: 10.3390/cells10081959. PMID: 34440728; PMCID: PMC8393426.
  5. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012 Jul;64(3):676-705. doi: 10.1124/pr.112.005983. Epub 2012 Jun 21. PMID: 22722893.
  6. Li C, Wei S, Xu Q, Sun Y, Ning X, Wang Z. Application of ADSCs and their Exosomes in Scar Prevention. Stem Cell Rev Rep. 2022 Mar;18(3):952-967. doi: 10.1007/s12015-021-10252-5. Epub 2021 Sep 12. PMID: 34510359; PMCID: PMC8942892.
  7. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, Tran PHL, Chen C, Veedu RN, Wang T. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020 Feb 19;10(8):3684-3707. doi: 10.7150/thno.41580. PMID: 32206116; PMCID: PMC7069071.
  8. Balaji S, Keswani SG, Crombleholme TM. The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype. Adv Wound Care (New Rochelle). 2012 Aug;1(4):159-165. doi: 10.1089/wound.2012.0361. PMID: 24527298; PMCID: PMC3839028.
  9. Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009 Mar;10(3):207-17. doi: 10.1038/nrm2636. Epub 2009 Feb 11. PMID: 19209183; PMCID: PMC2760218.
  10. Cappuzzello C, Doni A, Dander E, Pasqualini F, Nebuloni M, Bottazzi B, Mantovani A, Biondi A, Garlanda C, D'Amico G. Mesenchymal Stromal Cell-Derived PTX3 Promotes Wound Healing via Fibrin Remodeling. J Invest Dermatol. 2016 Jan;136(1):293-300. doi: 10.1038/JID.2015.346. PMID: 26763449.
  11. Mazini L, Rochette L, Amal S, Admou B, Malka G. Adipose derived stem cells (ADSCs) Immunomodulation Impact on Skin Tissue Repair. JES. 2020;4(1):1-9. doi: 10.23880/jes-16000136.
  12. Mazini L, Rochette L, Admou B, Amal S, Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int J Mol Sci. 2020 Feb 14;21(4):1306. doi: 10.3390/ijms21041306. PMID: 32075181; PMCID: PMC7072889.
  13. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008 Feb 15;180(4):2581-7. doi: 10.4049/jimmunol.180.4.2581. PMID: 18250469.
  14. Cuevas-Diaz Duran R, González-Garza MT, Cardenas-Lopez A, Chavez-Castilla L, Cruz-Vega DE, Moreno-Cuevas JE. Age-related yield of adipose-derived stem cells bearing the low-affinity nerve growth factor receptor. Stem Cells Int. 2013;2013:372164. doi: 10.1155/2013/372164. Epub 2013 Nov 24. PMID: 24376462; PMCID: PMC3859201.
  15. Lin Z, Shibuya Y, Imai Y, Oshima J, Sasaki M, Sasaki K, Aihara Y, Khanh VC, Sekido M. Therapeutic Potential of Adipose-Derived Stem Cell-Conditioned Medium and Extracellular Vesicles in an In Vitro Radiation-Induced Skin Injury Model. Int J Mol Sci. 2023 Dec 7;24(24):17214. doi: 10.3390/ijms242417214. PMID: 38139042; PMCID: PMC10743562.
  16. Li Y, Shi G, Liang W, Shang H, Li H, Han Y, Zhao W, Bai L, Qin C. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells. 2023 Jul 26;12(15):1936. doi: 10.3390/cells12151936. PMID: 37566014; PMCID: PMC10417209.
  17. Kocan B, Maziarz A, Tabarkiewicz J, Ochiya T, Banaś-Ząbczyk A. Trophic Activity and Phenotype of Adipose Tissue-Derived Mesenchymal Stem Cells as a Background of Their Regenerative Potential. Stem Cells Int. 2017;2017:1653254. doi: 10.1155/2017/1653254. Epub 2017 Jul 5. PMID: 28757877; PMCID: PMC5516761.
  18. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H, Chen L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016 Sep 12;6:32993. doi: 10.1038/srep32993. Erratum in: Sci Rep. 2020 Apr 16;10(1):6693. doi: 10.1038/s41598-020-63068-7. PMID: 27615560; PMCID: PMC5018733.
  19. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012 Sep 20;21(14):2724-52. doi: 10.1089/scd.2011.0722. Epub 2012 May 9. PMID: 22468918.
  20. Zhou W, Lin J, Zhao K, Jin K, He Q, Hu Y, Feng G, Cai Y, Xia C, Liu H, Shen W, Hu X, Ouyang H. Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin. Am J Sports Med. 2019 Jun;47(7):1722-1733. doi: 10.1177/0363546519848678. Epub 2019 May 17. PMID: 31100005.
  21. Zhang J, Liu Y, Chen Y, Yuan L, Liu H, Wang J, Liu Q, Zhang Y. Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int. 2020 Dec 10;2020:8810813. doi: 10.1155/2020/8810813. PMID: 33488736; PMCID: PMC7787857.
  22. Cai Y, Li J, Jia C, He Y, Deng C. Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Res Ther. 2020 Jul 22;11(1):312. doi: 10.1186/s13287-020-01831-3. PMID: 32698868; PMCID: PMC7374967.
  23. Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest. 2016 Apr 1;126(4):1152-62. doi: 10.1172/JCI81129. Epub 2016 Apr 1. PMID: 27035807; PMCID: PMC4811150.
  24. Zhang D, Fu Q, Fu H, Zeng J, Jia L, Chen M. 3D-bioprinted human lipoaspirate-derived cell-laden skin constructs for healing of full-thickness skin defects. Int J Bioprint. 2023 Mar 23;9(4):718. doi: 10.18063/ijb.718. PMID: 37323499; PMCID: PMC10261198.
  25. Wang L, Li T, Ma X, Li Y, Li Z, Li Z, Yu N, Huang J, Han Q, Long X. Exosomes from human adipose-derived mesenchymal stem cells attenuate localized scleroderma fibrosis by the let-7a-5p/TGF-βR1/Smad axis. J Dermatol Sci. 2023 Oct;112(1):31-38. doi: 10.1016/j.jdermsci.2023.09.001. Epub 2023 Sep 6. PMID: 37743142.
  26. Wang JW, Zhu YZ, Ouyang JY, Nie JY, Wang ZH, Wu S, Yang JM, Yi YY. Adipose-Derived Stem Cell Extracellular Vesicles Improve Wound Closure and Angiogenesis in Diabetic Mice. Plast Reconstr Surg. 2023 Feb 1;151(2):331-342. doi: 10.1097/PRS.0000000000009840. Epub 2022 Nov 8. PMID: 36696316.
  27. Chaker D, Mouawad C, Azar A, Quilliot D, Achkar I, Fajloun Z, Makdissy N. Inhibition of the RhoGTPase Cdc42 by ML141 enhances hepatocyte differentiation from human adipose-derived mesenchymal stem cells via the Wnt5a/PI3K/miR-122 pathway: impact of the age of the donor. Stem Cell Res Ther. 2018 Jun 19;9(1):167. doi: 10.1186/s13287-018-0910-5. PMID: 29921325; PMCID: PMC6009972.
  28. García-Contreras M, Vera-Donoso CD, Hernández-Andreu JM, García-Verdugo JM, Oltra E. Therapeutic potential of human adipose-derived stem cells (ADSCs) from cancer patients: a pilot study. PLoS One. 2014 Nov 20;9(11):e113288. doi: 10.1371/journal.pone.0113288. PMID: 25412325; PMCID: PMC4239050.
  29. Franck CL, Senegaglia AC, Leite LMB, de Moura SAB, Francisco NF, Ribas Filho JM. Influence of Adipose Tissue-Derived Stem Cells on the Burn Wound Healing Process. Stem Cells Int. 2019 Feb 11;2019:2340725. doi: 10.1155/2019/2340725. PMID: 30886634; PMCID: PMC6388323.
  30. L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019 Apr;46:1-9. doi: 10.1016/j.cytogfr.2019.04.002. Epub 2019 Apr 2. PMID: 30954374.
  31. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci. 2017 Aug 25;18(9):1852. doi: 10.3390/ijms18091852. PMID: 28841158; PMCID: PMC5618501.
  32. Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol. 2016 Mar;53(2):818-834. doi: 10.1007/s12035-014-9054-5. Epub 2014 Dec 15. PMID: 25502465; PMCID: PMC4752585.
  33. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, Pegtel DM. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015 Jul 1;6(1):127. doi: 10.1186/s13287-015-0116-z. PMID: 26129847; PMCID: PMC4529699.
  34. Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017 Jun 9;356(6342):1026-1030. doi: 10.1126/science.aam7928. Epub 2017 Jun 8. PMID: 28596335.
  35. Lee HJ, Jang YJ. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int J Mol Sci. 2018 Mar 2;19(3):711. doi: 10.3390/ijms19030711. PMID: 29498630; PMCID: PMC5877572.
  36. Wang ZC, Zhao WY, Cao Y, Liu YQ, Sun Q, Shi P, Cai JQ, Shen XZ, Tan WQ. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol. 2020 Dec 4;11:603187. doi: 10.3389/fimmu.2020.603187. PMID: 33343575; PMCID: PMC7746641.
  37. Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev. 2022 Aug;66:26-37. doi: 10.1016/j.cytogfr.2022.03.001. Epub 2022 Mar 31. Erratum in: Cytokine Growth Factor Rev. 2022 Dec;68:116. doi: 10.1016/j.cytogfr.2022.09.002. PMID: 35690568.
  38. Ma J, Yong L, Lei P, Li H, Fang Y, Wang L, Haojie Chen, Qi Zhou, Wei Wu, Libo Jin, Da Sun, Xingxing Zhang. Advances in microRNA from adipose-derived mesenchymal stem cell-derived exosome: Focusing on wound healing. J Mater Chem B. 2022;10(46):9565-77. doi: 10.1039/D2TB01987F.
  39. Koupenova M, Kehrel BE, Corkrey HA, Freedman JE. Thrombosis and platelets: an update. Eur Heart J. 2017 Mar 14;38(11):785-791. doi: 10.1093/eurheartj/ehw550. PMID: 28039338; PMCID: PMC11110018.
  40. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ Res. 2018 Jan 19;122(2):337-351. doi: 10.1161/CIRCRESAHA.117.310795. PMID: 29348254; PMCID: PMC5777300.
  41. Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev. 2021 Mar;46:100733. doi: 10.1016/j.blre.2020.100733. Epub 2020 Jul 12. PMID: 32682574; PMCID: PMC7354275.
  42. Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015 May;29(3):153-62. doi: 10.1016/j.blre.2014.10.003. Epub 2014 Oct 31. PMID: 25468720; PMCID: PMC4452143.
  43. Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017 Jun;36(2):195-198. doi: 10.1007/s10555-017-9677-x. PMID: 28667366; PMCID: PMC5709181.
  44. Martin P. Wound healing--aiming for perfect skin regeneration. Science. 1997 Apr 4;276(5309):75-81. doi: 10.1126/science.276.5309.75. PMID: 9082989.
  45. An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, Gu L, Zhang C, Wang B, Wei W, Li D, Wu J. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 2021 Mar;54(3):e12993. doi: 10.1111/cpr.12993. Epub 2021 Jan 17. PMID: 33458899; PMCID: PMC7941238.
  46. Lee JY, Oh N, Park KS. Ell3 Modulates the Wound Healing Activity of Conditioned Medium of Adipose-derived Stem Cells. Dev Reprod. 2017 Sep;21(3):335-342. doi: 10.12717/DR.2017.21.3.335. Epub 2017 Sep 30. PMID: 29082349; PMCID: PMC5651700.
  47. Lee JY, Oh N, Park KS. Ell3 Modulates the Wound Healing Activity of Conditioned Medium of Adipose-derived Stem Cells. Dev Reprod. 2017 Sep;21(3):335-342. doi: 10.12717/DR.2017.21.3.335. Epub 2017 Sep 30. PMID: 29082349; PMCID: PMC5651700.
  48. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015 Aug;173(2):370-8. doi: 10.1111/bjd.13954. Epub 2015 Jul 14. PMID: 26175283; PMCID: PMC4671308.
  49. Xu X, Gu S, Huang X, Ren J, Gu Y, Wei C, Lian X, Li H, Gao Y, Jin R, Gu B, Zan T, Wang Z. The role of macrophages in the formation of hypertrophic scars and keloids. Burns Trauma. 2020 Mar 11;8:tkaa006. doi: 10.1093/burnst/tkaa006. PMID: 32341919; PMCID: PMC7175772.
  50. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Müller W, Roers A, Eming SA. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010 Apr 1;184(7):3964-77. doi: 10.4049/jimmunol.0903356. Epub 2010 Feb 22. PMID: 20176743.
  51. Bagabir R, Byers RJ, Chaudhry IH, Müller W, Paus R, Bayat A. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol. 2012 Nov;167(5):1053-66. doi: 10.1111/j.1365-2133.2012.11190.x. PMID: 23106354.
  52. Li N, Bai B, Zhang H, Zhang W, Tang S. Adipose stem cell secretion combined with biomaterials facilitates large-area wound healing. Regen Med. 2020 Nov;15(11):2311-2323. doi: 10.2217/rme-2020-0086. Epub 2020 Dec 15. PMID: 33320721.
  53. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003 Jul;83(3):835-70. doi: 10.1152/physrev.2003.83.3.835. PMID: 12843410.
  54. Abomaray FM, Al Jumah MA, Alsaad KO, Jawdat D, Al Khaldi A, AlAskar AS, Al Harthy S, Al Subayyil AM, Khatlani T, Alawad AO, Alkushi A, Kalionis B, Abumaree MH. Phenotypic and Functional Characterization of Mesenchymal Stem/Multipotent Stromal Cells from Decidua Basalis of Human Term Placenta. Stem Cells Int. 2016;2016:5184601. doi: 10.1155/2016/5184601. Epub 2016 Feb 10. PMID: 27087815; PMCID: PMC4764756.
  55. Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M, Brantley-Sieders DM, Chen J. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 2015 Apr;35(7):1299-313. doi: 10.1128/MCB.00306-14. Epub 2015 Jan 12. PMID: 25582201; PMCID: PMC4355541.
  56. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000 Dec;5(1):40-6. doi: 10.1046/j.1087-0024.2000.00014.x. PMID: 11147674.
  57. Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T, Haase I, Brachvogel B, Hammerschmidt M, Nagy A, Ferrara N, Pasparakis M, Eming SA. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood. 2012 Jul 19;120(3):613-25. doi: 10.1182/blood-2012-01-403386. Epub 2012 May 10. PMID: 22577176.
  58. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010 Aug;163(2):257-68. doi: 10.1111/j.1365-2133.2010.09804.x. Epub 2010 Apr 15. PMID: 20394633.
  59. Lynam EC, Xie Y, Dawson R, Mcgovern J, Upton Z, Wang X. Severe hypoxia and malnutrition collectively contribute to scar fibroblast inhibition and cell apoptosis. Wound Repair Regen. 2015 Sep;23(5):664-71. doi: 10.1111/wrr.12343. Epub 2015 Sep 22. Erratum in: Wound Repair Regen. 2015 Nov-Dec;23(6):956. doi: 10.1111/wrr.12377. PMID: 26174572.
  60. Siddiqui A, Galiano RD, Connors D, Gruskin E, Wu L, Mustoe TA. Differential effects of oxygen on human dermal fibroblasts: acute versus chronic hypoxia. Wound Repair Regen. 1996 Apr-Jun;4(2):211-8. doi: 10.1046/j.1524-475X.1996.40207.x. PMID: 17177815.
  61. Rousselle P, Montmasson M, Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 2019 Jan;75-76:12-26. doi: 10.1016/j.matbio.2018.01.002. Epub 2018 Jan 10. PMID: 29330022.
  62. Atkin L. Chronic wounds: the challenges of appropriate management. Br J Community Nurs. 2019 Sep 1;24(Sup9):S26-S32. doi: 10.12968/bjcn.2019.24.Sup9.S26. PMID: 31479336.
  63. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020 Sep;10(9):200223. doi: 10.1098/rsob.200223. Epub 2020 Sep 30. PMID: 32993416; PMCID: PMC7536089.
  64. Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in Chronic Wounds. Int J Mol Sci. 2016 Dec 11;17(12):2085. doi: 10.3390/ijms17122085. PMID: 27973441; PMCID: PMC5187885.
  65. Henriksen JL, Sørensen NB, Fink T, Zachar V, Porsborg SR. Systematic Review of Stem-Cell-Based Therapy of Burn Wounds: Lessons Learned from Animal and Clinical Studies. Cells. 2020 Nov 26;9(12):2545. doi: 10.3390/cells9122545. PMID: 33256038; PMCID: PMC7761075.
  66. Takeo M, Lee W, Ito M. Wound healing and skin regeneration. Cold Spring Harb Perspect Med. 2015 Jan 5;5(1):a023267. doi: 10.1101/cshperspect.a023267. PMID: 25561722; PMCID: PMC4292081.
  67. Wilkins RG, Unverdorben M. Wound cleaning and wound healing: a concise review. Adv Skin Wound Care. 2013 Apr;26(4):160-3. doi: 10.1097/01.ASW.0000428861.26671.41. PMID: 23507692.
  68. Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2019 Jun;146:344-365. doi: 10.1016/j.addr.2018.06.019. Epub 2018 Jul 5. PMID: 29981800.
  69. Wound Healing: A Cellular Perspective. PMC. 2023;Oct 11.
  70. Harless WW. Cancer treatments transform residual cancer cell phenotype. Cancer Cell Int. 2011 Jan 7;11(1):1. doi: 10.1186/1475-2867-11-1. PMID: 21214935; PMCID: PMC3022788.
  71. Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 2009 Jun;119(6):1417-9. doi: 10.1172/JCI39675. PMID: 19487817; PMCID: PMC2689122.
  72. Yuan FL, Sun ZL, Feng Y, Liu SY, Du Y, Yu S, Yang ML, Lv GZ. Epithelial-mesenchymal transition in the formation of hypertrophic scars and keloids. J Cell Physiol. 2019 Dec;234(12):21662-21669. doi: 10.1002/jcp.28830. Epub 2019 May 20. PMID: 31106425.
  73. Zhu Z, Hou Q, Li M, Fu X. Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars. J Cell Physiol. 2020 May;235(5):4109-4119. doi: 10.1002/jcp.29302. Epub 2019 Oct 14. PMID: 31612497.
  74. Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Res. 2016 Apr 26;5:F1000 Faculty Rev-752. doi: 10.12688/f1000research.8190.1. PMID: 27158462; PMCID: PMC4847562.

  75. Lebonvallet N, Laverdet B, Misery L, Desmoulière A, Girard D. New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation. Exp Dermatol. 2018 Sep;27(9):950-958. doi: 10.1111/exd.13681. Epub 2018 Jun 28. PMID: 29742295.
  76. Cohen BE, Geronemus RG, McDaniel DH, Brauer JA. The Role of Elastic Fibers in Scar Formation and Treatment. Dermatol Surg. 2017 Jan;43 Suppl 1:S19-S24. doi: 10.1097/DSS.0000000000000840. PMID: 27399940.
  77. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018 Mar;7(1):1-21. doi: 10.1007/s40204-018-0083-4. Epub 2018 Feb 14. PMID: 29446015; PMCID: PMC5823812.
  78. Bitto A, Irrera N, Pizzino G, Pallio G, Mannino F, Vaccaro M, Arcoraci V, Aliquò F, Minutoli L, Colonna MR, Galeano MR, Brines M, De Ponte C, Collino M, Squadrito F, Altavilla D. Activation of the EPOR-β common receptor complex by cibinetide ameliorates impaired wound healing in mice with genetic diabetes. Biochim Biophys Acta Mol Basis Dis. 2018 Feb;1864(2):632-639. doi: 10.1016/j.bbadis.2017.12.006. Epub 2017 Dec 7. PMID: 29223734.
  79. Van Putte L, De Schrijver S, Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: a systematic review. Scars Burn Heal. 2016 Dec 5;2:2059513116676828. doi: 10.1177/2059513116676828. PMID: 29799552; PMCID: PMC5965313.
  80. Kranendonk ME, Visseren FL, van Balkom BW, Nolte-'t Hoen EN, van Herwaarden JA, de Jager W, Schipper HS, Brenkman AB, Verhaar MC, Wauben MH, Kalkhoven E. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring). 2014 May;22(5):1296-308. doi: 10.1002/oby.20679. Epub 2014 Jan 9. PMID: 24339422.
  81. Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, Casado JG. Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells. Front Immunol. 2014 Nov 4;5:556. doi: 10.3389/fimmu.2014.00556. PMID: 25414703; PMCID: PMC4220146.
  82. Bolandi Z, Mokhberian N, Eftekhary M, Sharifi K, Soudi S, Ghanbarian H, Hashemi SM. Adipose derived mesenchymal stem cell exosomes loaded with miR-10a promote the differentiation of Th17 and Treg from naive CD4+ T cell. Life Sci. 2020 Oct 15;259:118218. doi: 10.1016/j.lfs.2020.118218. Epub 2020 Aug 9. PMID: 32784057.
  83. Zhang Y, Mei H, Chang X, Chen F, Zhu Y, Han X. Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155. J Mol Cell Biol. 2016 Dec;8(6):505-517. doi: 10.1093/jmcb/mjw040. Epub 2016 Sep 25. PMID: 27671445.
  84. Zhou Y, Wang J, Li H, Liang X, Bae J, Huang X, Li Q. Efficacy and Safety of Cell-Assisted Lipotransfer: A Systematic Review and Meta-Analysis. Plast Reconstr Surg. 2016 Jan;137(1):44e-57e. doi: 10.1097/PRS.0000000000001981. PMID: 26710060.
  85. Domenis R, Cifù A, Quaglia S, Pistis C, Moretti M, Vicario A, Parodi PC, Fabris M, Niazi KR, Soon-Shiong P, Curcio F. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep. 2018 Sep 6;8(1):13325. doi: 10.1038/s41598-018-31707-9. PMID: 30190615; PMCID: PMC6127134.
  86. Heo JS, Choi Y, Kim HO. Adipose-Derived Mesenchymal Stem Cells Promote M2 Macrophage Phenotype through Exosomes. Stem Cells Int. 2019 Nov 5;2019:7921760. doi: 10.1155/2019/7921760. PMID: 31781246; PMCID: PMC6875419.
  87. Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther. 2019 Aug 7;10(1):242. doi: 10.1186/s13287-019-1358-y. PMID: 31391108; PMCID: PMC6686455.
  88. Heo JS, Kim S. Human adipose mesenchymal stem cells modulate inflammation and angiogenesis through exosomes. Sci Rep. 2022 Feb 17;12(1):2776. doi: 10.1038/s41598-022-06824-1. PMID: 35177768; PMCID: PMC8854709.
  89. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H, Chen L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016 Sep 12;6:32993. doi: 10.1038/srep32993. Erratum in: Sci Rep. 2020 Apr 16;10(1):6693. doi: 10.1038/s41598-020-63068-7. PMID: 27615560; PMCID: PMC5018733.
  90. An Y, Zhao J, Nie F, Qin Z, Xue H, Wang G, Li D. Exosomes from Adipose-Derived Stem Cells (ADSCs) Overexpressing miR-21 Promote Vascularization of Endothelial Cells. Sci Rep. 2019 Sep 6;9(1):12861. doi: 10.1038/s41598-019-49339-y. PMID: 31492946; PMCID: PMC6731308.
  91. Pi L, Yang L, Fang BR, Meng XX, Qian L. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN. Mol Cell Biochem. 2022 Jan;477(1):115-127. doi: 10.1007/s11010-021-04251-w. Epub 2021 Sep 28. PMID: 34581942.
  92. Wang L, Hu L, Zhou X, Xiong Z, Zhang C, Shehada HMA, Hu B, Song J, Chen L. Author Correction: Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci Rep. 2021 Feb 1;11(1):3245. doi: 10.1038/s41598-021-82225-0. Erratum for: Sci Rep. 2017 Oct 17;7(1):13321. doi: 10.1038/s41598-017-12919-x. PMID: 33526797; PMCID: PMC7851382.
  93. Yang C, Luo L, Bai X, Shen K, Liu K, Wang J, Hu D. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys. 2020 Mar 15;681:108259. doi: 10.1016/j.abb.2020.108259. Epub 2020 Jan 9. PMID: 31926164.
  94. Cooper DR, Wang C, Patel R, Trujillo A, Patel NA, Prather J, Gould LJ, Wu MH. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing. Adv Wound Care (New Rochelle). 2018 Sep 1;7(9):299-308. doi: 10.1089/wound.2017.0775. Epub 2018 Sep 4. PMID: 30263873; PMCID: PMC6158770.
  95. Qian L, Pi L, Fang BR, Meng XX. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis. Lab Invest. 2021 Sep;101(9):1254-1266. doi: 10.1038/s41374-021-00611-8. Epub 2021 May 27. PMID: 34045678.
  96. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H, Chen L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016 Sep 12;6:32993. doi: 10.1038/srep32993. Erratum in: Sci Rep. 2020 Apr 16;10(1):6693. doi: 10.1038/s41598-020-63068-7. PMID: 27615560; PMCID: PMC5018733.
  97. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016 Jun 1;129(11):2182-9. doi: 10.1242/jcs.170373. PMID: 27252357.
  98. Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, He T, Shen K, Wang Y, Liu J, Zhang W, Wang H, Zheng Z, Hu D. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther. 2021 Mar 31;12(1):221. doi: 10.1186/s13287-021-02290-0. Erratum in: Stem Cell Res Ther. 2021 Sep 3;12(1):490. doi: 10.1186/s13287-021-02568-3. PMID: 33789737; PMCID: PMC8010995.
  99. Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, Bond VC, Chen YE, Liu D. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Transl Med. 2016 Apr;5(4):440-50. doi: 10.5966/sctm.2015-0177. Epub 2016 Mar 1. PMID: 26933040; PMCID: PMC4798737.
  100. Choi EW, Seo MK, Woo EY, Kim SH, Park EJ, Kim S. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp Dermatol. 2018 Oct;27(10):1170-1172. doi: 10.1111/exd.13451. Epub 2017 Nov 10. PMID: 28940813.
  101. Ma J, Zhang Z, Wang Y, Shen H. Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects. Exp Dermatol. 2022 Mar;31(3):362-374. doi: 10.1111/exd.14480. Epub 2021 Dec 15. PMID: 34694648.
  102. Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN, Pass HI. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 2013 Sep;8(9):1156-62. doi: 10.1097/JTO.0b013e318299ac32. PMID: 23945385; PMCID: PMC4123222.
  103. Sun Y, Xiong X, Wang X. The miR-590-3p/VEGFA axis modulates secretion of VEGFA from adipose-derived stem cells, which acts as a paracrine regulator of human dermal microvascular endothelial cell angiogenesis. Hum Cell. 2020 Jul;33(3):479-489. doi: 10.1007/s13577-019-00315-8. Epub 2020 Apr 10. PMID: 32277427.
  104. Zheng T, Shao W, Tian J. Exosomes derived from ADSCs containing miR-378 promotes wound healing by targeting caspase-3. J Biochem Mol Toxicol. 2021 Oct;35(10):e22881. doi: 10.1002/jbt.22881. Epub 2021 Aug 15. PMID: 34392575.
  105. Guo B, Hui Q, Xu Z, Chang P, Tao K. miR-495 inhibits the growth of fibroblasts in hypertrophic scars. Aging (Albany NY). 2019 May 14;11(9):2898-2910. doi: 10.18632/aging.101965. PMID: 31085805; PMCID: PMC6535065.
  106. Xu M, Fang S, Xie A. Posttranscriptional control of PLOD1 in adipose-derived stem cells regulates scar formation through altering macrophage polarization. Ann Transl Med. 2021 Oct;9(20):1573. doi: 10.21037/atm-21-4978. PMID: 34790779; PMCID: PMC8576667.
  107. Yuan R, Dai X, Li Y, Li C, Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol Med Rep. 2021 Nov;24(5):758. doi: 10.3892/mmr.2021.12398. Epub 2021 Sep 3. PMID: 34476508; PMCID: PMC8436211.
  108. Zhu J, Quan H. Adipose-derived stem cells-derived exosomes facilitate cutaneous wound healing by delivering XIST and restoring discoidin domain receptor 2. Cytokine. 2022 Oct;158:155981. doi: 10.1016/j.cyto.2022.155981. Epub 2022 Aug 8. PMID: 35952595.
  109. Wang J, Wu H, Peng Y, Zhao Y, Qin Y, Zhang Y, Xiao Z. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J Nanobiotechnology. 2021 Jul 7;19(1):202. doi: 10.1186/s12951-021-00942-0. PMID: 34233694; PMCID: PMC8261989.
  110. Chang CL, Chen HH, Chen KH, Chiang JY, Li YC, Lin HS, Sung PH, Yip HK. Adipose-derived mesenchymal stem cell-derived exosomes markedly protected the brain against sepsis syndrome induced injury in rat. Am J Transl Res. 2019 Jul 15;11(7):3955-3971. PMID: 31396312; PMCID: PMC6684905.
  111. Pu CM, Liu CW, Liang CJ, Yen YH, Chen SH, Jiang-Shieh YF, Chien CL, Chen YC, Chen YL. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression. J Invest Dermatol. 2017 Jun;137(6):1353-1362. doi: 10.1016/j.jid.2016.12.030. Epub 2017 Feb 3. PMID: 28163069.
  112. Luo Y, Yi X, Liang T, Jiang S, He R, Hu Y, Bai L, Wang C, Wang K, Zhu L. Autograft microskin combined with adipose-derived stem cell enhances wound healing in a full-thickness skin defect mouse model. Stem Cell Res Ther. 2019 Aug 30;10(1):279. doi: 10.1186/s13287-019-1389-4. PMID: 31470890; PMCID: PMC6717360.
  113. Han YD, Bai Y, Yan XL, Ren J, Zeng Q, Li XD, Pei XT, Han Y. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun. 2018 Feb 26;497(1):305-312. doi: 10.1016/j.bbrc.2018.02.076. Epub 2018 Feb 8. PMID: 29428734.
  114. Shi R, Jin Y, Hu W, Lian W, Cao C, Han S, Zhao S, Yuan H, Yang X, Shi J, Zhao H. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. Am J Physiol Cell Physiol. 2020 May 1;318(5):C848-C856. doi: 10.1152/ajpcell.00041.2020. Epub 2020 Mar 11. PMID: 32159361.
  115. Li X, Xie X, Lian W, Shi R, Han S, Zhang H, Lu L, Li M. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018 Apr 13;50(4):1-14. doi: 10.1038/s12276-018-0058-5. PMID: 29651102; PMCID: PMC5938041.
  116. Wang Z, Feng C, Liu H, Meng T, Huang W, Long X, Wang X. Hypoxic Pretreatment of Adipose-Derived Stem Cells Accelerates Diabetic Wound Healing via circ-Gcap14 and HIF-1α/VEGF Mediated Angiopoiesis. Int J Stem Cells. 2021 Nov 30;14(4):447-454. doi: 10.15283/ijsc21050. PMID: 34456191; PMCID: PMC8611313.
  117. Parvanian S, Yan F, Su D, Coelho-Rato LS, Venu AP, Yang P, Zou X, Jiu Y, Chen H, Eriksson JE, Cheng F. Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton (Hoboken). 2020 Oct;77(10):399-413. doi: 10.1002/cm.21634. Epub 2020 Oct 17. PMID: 32978896.
  118. Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, He T, Shen K, Wang Y, Liu J, Zhang W, Wang H, Zheng Z, Hu D. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther. 2021 Mar 31;12(1):221. doi: 10.1186/s13287-021-02290-0. Erratum in: Stem Cell Res Ther. 2021 Sep 3;12(1):490. doi: 10.1186/s13287-021-02568-3. PMID: 33789737; PMCID: PMC8010995.
  119. Cao G, Chen B, Zhang X, Chen H. Human Adipose-Derived Mesenchymal Stem Cells-Derived Exosomal microRNA-19b Promotes the Healing of Skin Wounds Through Modulation of the CCL1/TGF-β Signaling Axis. Clin Cosmet Investig Dermatol. 2020 Dec 15;13:957-971. doi: 10.2147/CCID.S274370. PMID: 33364805; PMCID: PMC7751444.
  120. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008 Sep-Oct;16(5):585-601. doi: 10.1111/j.1524-475X.2008.00410.x. PMID: 19128254.121. Blanpain C, Fuchs E. Epidermal Stem Cells of the Skin. Annu Rev Cell Dev Biol. 2006 Nov 1;22(1):339–73.
  121. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339-73. doi: 10.1146/annurev.cellbio.22.010305.104357. PMID: 16824012; PMCID: PMC2405915.
  122. Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell. 2007 Feb 9;128(3):445-58. doi: 10.1016/j.cell.2007.01.014. PMID: 17289566; PMCID: PMC2408375.
  123. Rochette L, Mazini L, Meloux A, Zeller M, Cottin Y, Vergely C, Malka G. Anti-Aging Effects of GDF11 on Skin. Int J Mol Sci. 2020 Apr 9;21(7):2598. doi: 10.3390/ijms21072598. PMID: 32283613; PMCID: PMC7177281.
  124. Bachmann S, Jennewein M, Bubel M, Guthörl S, Pohlemann T, Oberringer M. Interacting adipose-derived stem cells and microvascular endothelial cells provide a beneficial milieu for soft tissue healing. Mol Biol Rep. 2020 Jan;47(1):111-122. doi: 10.1007/s11033-019-05112-y. Epub 2019 Oct 3. PMID: 31583562.
  125. Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, He T, Shen K, Wang Y, Liu J, Zhang W, Wang H, Zheng Z, Hu D. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther. 2021 Mar 31;12(1):221. doi: 10.1186/s13287-021-02290-0. Erratum in: Stem Cell Res Ther. 2021 Sep 3;12(1):490. doi: 10.1186/s13287-021-02568-3. PMID: 33789737; PMCID: PMC8010995.
  126. Lu Y, Wen H, Huang J, Liao P, Liao H, Tu J, Zeng Y. Extracellular vesicle-enclosed miR-486-5p mediates wound healing with adipose-derived stem cells by promoting angiogenesis. J Cell Mol Med. 2020 Sep;24(17):9590-9604. doi: 10.1111/jcmm.15387. Epub 2020 Jul 14. PMID: 32666704; PMCID: PMC7520275.
  127. Song Y, You Y, Xu X, Lu J, Huang X, Zhang J, Zhu L, Hu J, Wu X, Xu X, Tan W, Du Y. Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. Adv Sci (Weinh). 2023 Oct;10(30):e2304023. doi: 10.1002/advs.202304023. Epub 2023 Sep 15. PMID: 37712174; PMCID: PMC10602544.
  128. Xie J, Wu W, Zheng L, Lin X, Tai Y, Wang Y, Wang L. Roles of MicroRNA-21 in Skin Wound Healing: A Comprehensive Review. Front Pharmacol. 2022 Feb 28;13:828627. doi: 10.3389/fphar.2022.828627. PMID: 35295323; PMCID: PMC8919367.
  129. Pasternak B, Schepull T, Eliasson P, Aspenberg P. Elevation of systemic matrix metalloproteinases 2 and 7 and tissue inhibitor of metalloproteinase 2 in patients with a history of Achilles tendon rupture: pilot study. Br J Sports Med. 2010 Jul;44(9):669-72. doi: 10.1136/bjsm.2008.049411. Epub 2008 Jul 15. PMID: 18628360.130.
  130. Huayllani MT, Sarabia-Estrada R, Restrepo DJ, Boczar D, Sisti A, Nguyen JH, Rinker BD, Moran SL, Quiñones-Hinojosa A, Forte AJ. Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature. J Plast Surg Hand Surg. 2020 Oct;54(5):263-279. doi: 10.1080/2000656X.2020.1767116. Epub 2020 May 19. PMID: 32427016.
  131. Qiu H, Liu S, Wu K, Zhao R, Cao L, Wang H. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review. J Cosmet Dermatol. 2020 Mar;19(3):574-581. doi: 10.1111/jocd.13215. Epub 2019 Nov 21. PMID: 31755172.
  132. Akbari A, Jabbari N, Sharifi R, Ahmadi M, Vahhabi A, Seyedzadeh SJ, Nawaz M, Szafert S, Mahmoodi M, Jabbari E, Asghari R, Rezaie J. Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. Life Sci. 2020 May 15;249:117447. doi: 10.1016/j.lfs.2020.117447. Epub 2020 Feb 19. PMID: 32087234.
  133. Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, Yamato H, Yotsumoto K, Tanaka U, Taketomi T, Uchiumi T, Le AD, Shi S, Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021 Mar 1;122:306-324. doi: 10.1016/j.actbio.2020.12.046. Epub 2020 Dec 24. Erratum in: Acta Biomater. 2025 Jan 1;191:428-429. doi: 10.1016/j.actbio.2024.11.029. PMID: 33359765; PMCID: PMC7897289.
  134. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011 Apr;29(4):341-5. doi: 10.1038/nbt.1807. Epub 2011 Mar 20. PMID: 21423189.
  135. Du J, Wan Z, Wang C, Lu F, Wei M, Wang D, Hao Q. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics. 2021 Jul 13;11(17):8185-8196. doi: 10.7150/thno.59121. PMID: 34373736; PMCID: PMC8344009.
  136. Wang X, Nakamoto T, Dulińska-Molak I, Kawazoe N, Chen G. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. J Mater Chem B. 2016;4(1):37-45.
  137. Leijten J, Seo J, Yue K, Santiago GT, Tamayol A, Ruiz-Esparza GU, Shin SR, Sharifi R, Noshadi I, Álvarez MM, Zhang YS, Khademhosseini A. Spatially and Temporally Controlled Hydrogels for Tissue Engineering. Mater Sci Eng R Rep. 2017 Sep;119:1-35. doi: 10.1016/j.mser.2017.07.001. Epub 2017 Jul 25. PMID: 29200661; PMCID: PMC5708586.
  138. Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption. Carbohydr Polym. 2016 Aug 20;147:379-391. doi: 10.1016/j.carbpol.2016.04.024. Epub 2016 Apr 9. PMID: 27178944.
  139. Ashworth C. DNA nanotechnology: Building big with DNA bricks. Nat Rev Mater. 2018 Jan 3;3(1):17092.
  140. Sun W. DNA nanotechnology: DNA robots that sort cargoes. Nat Nanotechnol. 2017 Dec;12(12):1120. doi: 10.1038/nnano.2017.236. Epub 2017 Dec 6. PMID: 29209013.
  141. Li F, Lyu D, Liu S, Guo W. DNA Hydrogels and Microgels for Biosensing and Biomedical Applications. Adv Mater. 2020 Jan;32(3):e1806538. doi: 10.1002/adma.201806538. Epub 2019 Aug 5. PMID: 31379017.
  142. Jung S, Abel JH, Starger JL, Yi H. Porosity-Tuned Chitosan-Polyacrylamide Hydrogel Microspheres for Improved Protein Conjugation. Biomacromolecules. 2016 Jul 11;17(7):2427-36. doi: 10.1021/acs.biomac.6b00582. Epub 2016 Jun 28. PMID: 27351270.
  143. Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater. 2013 Jan;2(1):57-71. doi: 10.1002/adhm.201200197. Epub 2012 Sep 3. PMID: 23184739.
  144. Li F, Tang J, Geng J, Luo D, Yang D. Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science. 2019;98:101163. doi: 10.1016/j.progpolymsci.2019.101163.
  145. Wang Z, Li W, Gou L, Zhou Y, Peng G, Zhang J, Liu J, Li R, Ni H, Zhang W, Cao T, Cao Q, Su H, Han YP, Tong N, Fu X, Ilegems E, Lu Y, Berggren PO, Zheng X, Wang C. Biodegradable and Antioxidant DNA Hydrogel as a Cytokine Delivery System for Diabetic Wound Healing. Adv Healthc Mater. 2022 Nov;11(21):e2200782. doi: 10.1002/adhm.202200782. Epub 2022 Sep 27. PMID: 36101484.
  146. Mao X, Chen G, Wang Z, Zhang Y, Zhu X, Li G. Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing. Chem Sci. 2017 Nov 22;9(4):811-818. doi: 10.1039/c7sc03716c. PMID: 29629148; PMCID: PMC5873223.
  147. Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. Biosensors (Basel). 2023 Feb 24;13(3):320. doi: 10.3390/bios13030320. PMID: 36979532; PMCID: PMC10046603.
  148. Li C, Faulkner-Jones A, Dun AR, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan RR. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Ed Engl. 2015 Mar 23;54(13):3957-61. doi: 10.1002/anie.201411383. Epub 2015 Feb 5. PMID: 25656851.
  149. Liu S, Liu Y, Zhou L, Li C, Zhang M, Zhang F, Zhentao Ding, Yongqiang Wen, Peixun Zhang. XT-type DNA hydrogels loaded with VEGF and NGF promote peripheral nerve regeneration via a biphasic release profile. Biomater Sci. 2021 Dec 7;9(24):8221–34. 10.1039/D1BM01377G.
  150. Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev. 2021 Jan;168:79-98. doi: 10.1016/j.addr.2020.07.018. Epub 2020 Jul 23. PMID: 32712197.
  151. Lu S, Wang S, Zhao J, Sun J, Yang X. A pH-controlled bidirectionally pure DNA hydrogel: reversible self-assembly and fluorescence monitoring. Chem Commun. 2018;54(36):4621-4. doi: 10.1039/C8CC01603H.
  152. Huang X, Li J, Luo J, Gao Q, Mao A, Li J. Research progress on double-network hydrogels. Materials Today Communications. 2021 Dec;29:102757. doi:10.1016/j.mtcomm.2021.102757.
  153. Sun Y, Liu J, Wang H, Li S, Pan X, Xu B, Hailong Yang, Qingyuan Wu, Wenxuan Li, Xin Su, Zhijun Huang, Xindong Guo, Huiyu Liu. NIR laser‐triggered microneedle‐based liquid band‐aid for wound care. Adv Funct Materials. 2021;(29):2100218. doi: 10.1002/adfm.202100218.
  154. Zhang Q, Shi L, He H, Liu X, Huang Y, Xu D, Yao M, Zhang N, Guo Y, Lu Y, Li H, Zhou J, Tan J, Xing M, Luo G. Down-Regulating Scar Formation by Microneedles Directly via a Mechanical Communication Pathway. ACS Nano. 2022 Jul 26;16(7):10163-10178. doi: 10.1021/acsnano.1c11016. Epub 2022 May 26. Erratum in: ACS Nano. 2023 Jun 13;17(11):11070-11071. doi: 10.1021/acsnano.3c03389. PMID: 35617518; PMCID: PMC9331171.
  155. Yu Y, Li P, Zhu C, Ning N, Zhang S, Vancso GJ. Multifunctional and Recyclable Photothermally Responsive Cryogels as Efficient Platforms for Wound Healing. Adv Funct Materials.;29(35):1904402. doi: 10.1002/adfm.201904402.
  156. Chen X, Zhou J, Li X, Wang X, Lin Y, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 2018 Oct 28;435:80-91. doi: 10.1016/j.canlet.2018.08.001. Epub 2018 Aug 8. Erratum in: Cancer Lett. 2023 Aug 1;568:216292. doi: 10.1016/j.canlet.2023.216292. PMID: 30098399.
  157. Liu A, Wang Q, Zhao Z, Wu R, Wang M, Li J, Sun K, Sun Z, Lv Z, Xu J, Jiang H, Wan M, Shi D, Mao C. Nitric Oxide Nanomotor Driving Exosomes-Loaded Microneedles for Achilles Tendinopathy Healing. ACS Nano. 2021 Aug 24;15(8):13339-13350. doi: 10.1021/acsnano.1c03177. Epub 2021 Jul 29. PMID: 34324304.
  158. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005 Sep;115(9):2393-401. doi: 10.1172/JCI25437. Epub 2005 Aug 18. Erratum in: J Clin Invest. 2010 Jan;120(1):394. PMID: 16110328; PMCID: PMC1187934.
  159. Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010 Apr;126(1):56-68. doi: 10.1016/j.pharmthera.2010.01.002. Epub 2010 Feb 1. PMID: 20117131; PMCID: PMC2839017.
  160. Grennan D. Diabetic Foot Ulcers. JAMA. 2019 Jan 1;321(1):114. doi: 10.1001/jama.2018.18323. PMID: 30620372.
  161. Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, Guo Y, Lei B. Efficient Angiogenesis-Based Diabetic Wound Healing/Skin Reconstruction through Bioactive Antibacterial Adhesive Ultraviolet Shielding Nanodressing with Exosome Release. ACS Nano. 2019 Sep 24;13(9):10279-10293. doi: 10.1021/acsnano.9b03656. Epub 2019 Sep 9. PMID: 31483606.
  162. Zhou L, Pi W, Cheng S, Gu Z, Zhang K, Min T, et al. Multifunctional DNA Hydrogels with Hydrocolloid‐Cotton Structure for Regeneration of Diabetic Infectious Wounds. Adv Funct Materials. 2021 Nov;31(48):2106167. dOI: 10.1002/adfm.202106167.
  163. Zhao P, Feng Y, Zhou Y, Tan C, Liu M. Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing. Bioact Mater. 2022 Jun 14;20:355-367. doi: 10.1016/j.bioactmat.2022.05.035. Erratum in: Bioact Mater. 2024 Jun 14;40:275-279. doi: 10.1016/j.bioactmat.2024.06.006. PMID: 35784635; PMCID: PMC9207301.
  164. Yang X, Ding C, Wu M, Xu X, Ke X, Xu H, et al. Biomineral interface with superior cell adhesive and antibacterial properties based on enzyme-triggered digestion of saliva acquired pellicle-inspired polypeptide coatings. Chemical Engineering Journal. 2021 Jul;415:128955. doi: 10.1016/j.cej.2021.128955.
  165. Cheng L, Cai Z, Ye T, Yu X, Chen Z, Yan Y, Yufei Yan, Jin Qi, Lei Wang, Zhihong Liu, Wenguo Cui, Lianfu Deng. Injectable polypeptide‐protein hydrogels for promoting infected wound healing. Adv Funct Materials. 2020;30(25):2001196. doi: 10.1002/adfm.202001196.
  166. Gao J, Dong X, Wang Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods. 2020 May 1;177:114-125. doi: 10.1016/j.ymeth.2019.11.012. Epub 2019 Nov 30. PMID: 31790730; PMCID: PMC7198327.
  167. Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020 Dec;27(1):585-598. doi: 10.1080/10717544.2020.1748758. PMID: 32264719; PMCID: PMC7178886.
  168. Liu Y, Wang Y, Lv Q, Li X. Exosomes: From garbage bins to translational medicine. Int J Pharm. 2020 Jun 15;583:119333. doi: 10.1016/j.ijpharm.2020.119333. Epub 2020 Apr 26. PMID: 32348800.
  169. Man K, Brunet MY, Jones MC, Cox SC. Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical Applications. Nanomaterials (Basel). 2020 Sep 15;10(9):1838. doi: 10.3390/nano10091838. PMID: 32942556; PMCID: PMC7558114.
  170. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release. 2015 Jun 10;207:18-30. doi: 10.1016/j.jconrel.2015.03.033. Epub 2015 Mar 31. Erratum in: J Control Release. 2021 Nov 10;339:232-234. doi: 10.1016/j.jconrel.2021.09.027. PMID: 25836593; PMCID: PMC4430381.
  171. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine. 2020 Sep 22;15:6917-6934. doi: 10.2147/IJN.S264498. PMID: 33061359; PMCID: PMC7519827.
  172. Hajipour H, Farzadi L, Roshangar L, Latifi Z, Kahroba H, Shahnazi V, Hamdi K, Ghasemzadeh A, Fattahi A, Nouri M. A human chorionic gonadotropin (hCG) delivery platform using engineered uterine exosomes to improve endometrial receptivity. Life Sci. 2021 Jun 15;275:119351. doi: 10.1016/j.lfs.2021.119351. Epub 2021 Mar 15. PMID: 33737084.
  173. Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release. 2021 Jan 10;329:894-906. doi: 10.1016/j.jconrel.2020.10.020. Epub 2020 Oct 12. PMID: 33058934.
  174. Guo P, Busatto S, Huang J, Morad G, Moses MA. A facile magnetic extrusion method for preparing endosome-derived vesicles for cancer drug delivery. Adv Funct Mater. 2021 Oct 26;31(44):2008326. doi: 10.1002/adfm.202008326. Epub 2021 Jan 20. PMID: 34924915; PMCID: PMC8680268.
  175. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015 May 10;205:35-44. doi: 10.1016/j.jconrel.2014.11.029. Epub 2014 Dec 4. PMID: 25483424.
  176. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017 Mar;16(3):181-202. doi: 10.1038/nrd.2016.199. Epub 2016 Nov 3. Erratum in: Nat Rev Drug Discov. 2017 Jun;16(6):440. doi: 10.1038/nrd.2017.86. PMID: 27807347; PMCID: PMC5700751.
  177. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjić N. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem. 1998 Aug 7;273(32):20556-67. doi: 10.1074/jbc.273.32.20556. PMID: 9685413.
  178. Wang T, Yin W, AlShamaileh H, Zhang Y, Tran PH, Nguyen TN, Li Y, Chen K, Sun M, Hou Y, Zhang W, Zhao Q, Chen C, Zhang PZ, Duan W. A Detailed Protein-SELEX Protocol Allowing Visual Assessments of Individual Steps for a High Success Rate. Hum Gene Ther Methods. 2019 Feb;30(1):1-16. doi: 10.1089/hgtb.2018.237. PMID: 30700146.
  179. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505-10. doi: 10.1126/science.2200121. PMID: 2200121.
  180. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology. 2018 Oct 16;16(1):81. doi: 10.1186/s12951-018-0403-9. PMID: 30326899; PMCID: PMC6190562.
  181. Gefen T, Castro I, Muharemagic D, Puplampu-Dove Y, Patel S, Gilboa E. A TIM-3 Oligonucleotide Aptamer Enhances T Cell Functions and Potentiates Tumor Immunity in Mice. Mol Ther. 2017 Oct 4;25(10):2280-2288. doi: 10.1016/j.ymthe.2017.06.023. Epub 2017 Aug 8. PMID: 28800954; PMCID: PMC5628791.
  182. Rahimizadeh K, AlShamaileh H, Fratini M, Chakravarthy M, Stephen M, Shigdar S, Veedu RN. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures. Molecules. 2017 Nov 27;22(12):2070. doi: 10.3390/molecules22122070. PMID: 29186905; PMCID: PMC6149766.
  183. Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, Yang C, Zhang Z. Intracellularly Generated Immunological Gold Nanoparticles for Combinatorial Photothermal Therapy and Immunotherapy against Tumor. Nano Lett. 2019 Sep 11;19(9):6635-6646. doi: 10.1021/acs.nanolett.9b02903. Epub 2019 Aug 12. PMID: 31393134.
  184. Alhasan AH, Patel PC, Choi CH, Mirkin CA. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. Small. 2014 Jan 15;10(1):186-92. doi: 10.1002/smll.201302143. Epub 2013 Sep 17. PMID: 24106176; PMCID: PMC3947239.
  185. Sancho-Albero M, Encabo-Berzosa M del M, Beltrán-Visiedo M, Fernández-Messina L, Sebastián V, Sánchez-Madrid F, Manuel Arruebo, Jesús Santamaría, Pilar Martín-Duque. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: Leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale. 2019;11(40):18825-36. doi: 10.1039/C9NR06183E.
  186. Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, Hakeem A, Hu J, Gan L, Santos HA, Yang X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019 Aug 23;10(1):3838. doi: 10.1038/s41467-019-11718-4. PMID: 31444335; PMCID: PMC6707218.
  187. Han J, Zhang L, Cui M, Su Y, He Y. Rapid and Accurate Detection of Lymph Node Metastases Enabled through Fluorescent Silicon Nanoparticles-Based Exosome Probes. Anal Chem. 2021 Jul 27;93(29):10122-10131. doi: 10.1021/acs.analchem.1c01010. Epub 2021 Jul 13. PMID: 34255475.
  188. Li Y, Gao Y, Gong C, Wang Z, Xia Q, Gu F, et al. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine: Nanotechnology, Biology and Medicine. 2018 Oct 1;14(7):1973–85.
  189. Li Y, Gao Y, Gong C, Wang Z, Xia Q, Gu F, Hu C, Zhang L, Guo H, Gao S. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine. 2018 Oct;14(7):1973-1985. doi: 10.1016/j.nano.2018.05.020. Epub 2018 Jun 20. PMID: 29935333.
  190. Van Deun J, Roux Q, Deville S, Van Acker T, Rappu P, Miinalainen I, Heino J, Vanhaecke F, De Geest BG, De Wever O, Hendrix A. Feasibility of Mechanical Extrusion to Coat Nanoparticles with Extracellular Vesicle Membranes. Cells. 2020 Jul 29;9(8):1797. doi: 10.3390/cells9081797. PMID: 32751082; PMCID: PMC7464356.
  191. Kim HY, Kumar H, Jo MJ, Kim J, Yoon JK, Lee JR, Kang M, Choo YW, Song SY, Kwon SP, Hyeon T, Han IB, Kim BS. Therapeutic Efficacy-Potentiated and Diseased Organ-Targeting Nanovesicles Derived from Mesenchymal Stem Cells for Spinal Cord Injury Treatment. Nano Lett. 2018 Aug 8;18(8):4965-4975. doi: 10.1021/acs.nanolett.8b01816. Epub 2018 Jul 13. PMID: 29995418.
  192. Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 2019 Aug;94:482-494. doi: 10.1016/j.actbio.2019.05.054. Epub 2019 May 24. PMID: 31129363.
  193. Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, Shiku H, Akiyoshi K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016 Feb 25;6:21933. doi: 10.1038/srep21933. PMID: 26911358; PMCID: PMC4766490.
  194. Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation. Anal Biochem. 2014 Mar 1;448:41-9. doi: 10.1016/j.ab.2013.12.001. Epub 2013 Dec 9. PMID: 24333249; PMCID: PMC3954633.
  195. Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018 Jul 24;12(7):6830-6842. doi: 10.1021/acsnano.8b02053. Epub 2018 Jul 10. PMID: 29975503.
  196. Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, Tan J. Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. Adv Sci (Weinh). 2018 Jan 30;5(4):1700611. doi: 10.1002/advs.201700611. PMID: 29721412; PMCID: PMC5908366.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search