Ayse Aksoy, Duygu Deniz Usta and Atiye Seda Yar Saglam*
Volume5-Issue12
Dates: Received: 2024-12-12 | Accepted: 2024-12-22 | Published: 2024-12-29
Pages: 1602-1615
Abstract
Parkinson's Disease (PD) is the second most frequently observed slowly progressive neurodegenerative disease after Alzheimer's. Although dopamine replacement remains an essential component of treatment, the point at which dyskinetic movements and motor fluctuations begin may demand a number of different approaches, both medical and surgical, delivered within a multidisciplinary framework. Significant new approaches to dopamine replacement are emerging. One of the most challenging aspects of treating the disease is the management of various non-motor symptoms, including anxiety, depression, constipation, bladder dysfunction, and sleep disorders. Innovative strategies are urgently required to combat these symptoms, which have a significant negative impact on quality of life. This review presents the latest therapeutic approaches that support the optimal treatment of both the non-motor and motor symptoms of PD.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2047
Certificate of Publication

Copyright
© 2024 Aksoy A, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Aksoy A, Usta DD, Yar Saglam AS. Current Treatments for Parkinsons Disease. J Biomed Res Environ Sci. 2024 Dec 29; 5(12): 1602-1615. doi: 10.37871/jbres2047, Article ID: JBRES2047, Available at: https://www.jelsciences.com/articles/jbres2047.pdf
Subject area(s)
References
- Paccosi E, Proietti-De-Santis L. Parkinson's Disease: From Genetics and Epigenetics to Treatment, a miRNA-Based Strategy. Int J Mol Sci. 2023 May 31;24(11):9547. doi: 10.3390/ijms24119547. PMID: 37298496; PMCID: PMC10253466.
- GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 May;18(5):459-480. doi: 10.1016/S1474-4422(18)30499-X. Epub 2019 Mar 14. PMID: 30879893; PMCID: PMC6459001.
- Postuma RB. Early markers of Parkinson's disease progression. Movement Disorders. 2023;38(3):451-460.
- Schapira AHV. Advances in Parkinson's disease pathogenesis. Nature Reviews Neurology. 2022;18(7):395-409.
- Aarsland D. Cognitive dysfunction in Parkinson's disease. The Lancet Neurology. 2022;21(10):845-856.
- Emre M. Dementia and Parkinson's disease: Clinical insights. Journal of Neurology. 2023;270(5):1234-1242.
- Chaudhuri KR. Non-motor symptoms in Parkinson’s disease: Diagnosis and management. Parkinsonism & Related Disorders. 2021;82:74:85.
- Rutten S. Anxiety and depression in Parkinson's disease. Journal of Clinical Psychiatry. 2023;84(2):12345.
- Jost WH. Autonomic dysfunction in Parkinson’s disease. Clinical Autonomic Research. 2022;32(1):15-24.
- Poewe W. Lewy body pathology and clinical manifestations. Journal of Parkinson’s disease. 2023;13(3):401-412.
- Schrag A. REM sleep behavior disorder as a prodromal symptom of Parkinson’s disease. Sleep Medicine Reviews. 2023;69:101567.
- Bloem BR. Postural instability and falls in Parkinson's disease. The Journal of Geriatric Neurology. 2023;14(5):233-243.
- Goetz CG. Motor and non-motor symptom overlap in Parkinson’s disease. Neurology. 2022;99(4):547-559.
- Lees AJ. Resting tremor as a diagnostic marker in Parkinson's disease. Parkinson’s Disease & Related Disorders. 2023;17(2):97-105.
- Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002 Mar;51(3):296-301. doi: 10.1002/ana.10113. PMID: 11891824.
- Smith A, Johnson R. Levodopa and its role in managing Parkinson’s disease. Neurology Advances. 2023;34(3):145-156.
- Brown J, Carter R. Motor fluctuations and their management in Parkinson’s disease. Parkinson’s Research Journal. 2022;8(2):234-245.
- Miller J, White P. Dopamine agonists in Parkinson’s therapy: Efficacy and side effects. Movement Disorders Today. 2021;11(4):89-97.
- Taylor R, Adams T. Neuropsychiatric effects of dopamine agonists in Parkinson’s disease. Psychiatric Neurology Reports. 2020;9(3):134-145.
- Green S, Carter R. MAO-B inhibitors: A review of their role in Parkinson’s treatment. Neuropharmacology Review. 2019;0(5):345-358.
- Carter R. Long-term use of MAO-B inhibitors in Parkinson’s disease. Neurological Advances. 2018;5(2):67-78.
- Evans R, Brown K. COMT inhibitors in Parkinson’s disease therapy. Neurotherapeutics. 2017;14(1):56-67.
- Martin T, Davis L. Managing side effects of COMT inhibitors in Parkinson’s disease. Movement Disorders Journal. 2016;12(6):456-468.
- Roberts T, Wilson P. Amantadine’s role in managing dyskinesias in Parkinson’s disease. Neurotherapeutics. 2015;10(2):234-243.
- Davis L. Safety considerations for amantadine use in Parkinson’s disease. Therapeutic Advances in Neurology. 2014;7(3):145-152.
- Wilson P, Thomas J. Anticholinergic treatments in Parkinson’s disease: A double-edged sword. Journal of Neurological Therapies. 2013;8(4):145-157.
- Adams R, Green P. Cellular therapies for Parkinson’s disease. Stem Cell Research and Therapy. 2021;12(4):234-245.
- Miller J, Taylor R. Challenges in cellular therapy for neurodegenerative disorders. Frontiers in Neuroscience. 2020;14:345-358.
- Chen T. Photothermal strategies for neurodegenerative diseases. Nano Today. 2023;45:101290.
- Zhang L. Assessing the safety of photothermal therapies in animal models. Nanomedicine. 2022;18(5):345-358.
- Brown J, Smith A. Advances in nucleic acid therapies for neurodegenerative diseases. Molecular Therapy. 2020;15(3):456-468.
- Harris L. The impact of exercise on Parkinson’s disease symptoms. Movement Science Journal. 2007;19(2):112-119.
- Johnson T, Adams M. Physical therapy in neurodegenerative conditions. Rehabilitation Research Reviews. 2008;10(2):89-102.
- Taylor R, Adams T. Cognitive and emotional interventions in Parkinson’s disease. Psychology Today. 2005;15(3):34-45.
- Green S. Psychotherapy as a complementary treatment for Parkinson’s disease. Journal of Neuropsychology. 2004;12(1):56-67.
- Kulisevsky J. Pharmacological management of Parkinson's disease motor symptoms: update and recommendations from an expert. Rev Neurol. 2022 Oct 31;75(s04):S1-S10. English, Spanish. doi: 10.33588/rn.75s04.2022217. PMID: 36342310; PMCID: PMC10281635.
- Aminoff MJ. Pharmacologic management of Parkinsonism and other movement disorders. In: Katzung BG, editor. Basic and Clinical Pharmacology. 14th ed. New York; McGraw-Hill Education: 2017.
- LeWitt PA. Levodopa therapy for Parkinson's disease: Pharmacokinetics and pharmacodynamics. Mov Disord. 2015 Jan;30(1):64-72. doi: 10.1002/mds.26082. Epub 2014 Dec 1. PMID: 25449210.
- Olanow CW, Stocchi F. Levodopa: A new look at an old friend. Mov Disord. 2018 Jul;33(6):859-866. doi: 10.1002/mds.27216. Epub 2017 Nov 27. PMID: 29178365.
- Lane EL. L-DOPA for Parkinson's disease-a bittersweet pill. Eur J Neurosci. 2019 Feb;49(3):384-398. doi: 10.1111/ejn.14119. Epub 2018 Sep 16. PMID: 30118169.
- Dhall R, Kreitzman DL. Advances in levodopa therapy for Parkinson disease: Review of RYTARY (carbidopa and levodopa) clinical efficacy and safety. Neurology. 2016 Apr 5;86(14 Suppl 1):S13-24. doi: 10.1212/WNL.0000000000002510. Epub 2016 Apr 4. PMID: 27044646.
- Çakmur R. Parkinson hastalığı ve medikal tedavisi. Klinik Gelişim. 2010;1:53-60.
- Woitalla D, Buhmann C, Hilker-Roggendorf R, Höglinger G, Koschel J, Müller T, Weise D. Role of dopamine agonists in Parkinson's disease therapy. J Neural Transm (Vienna). 2023 Jun;130(6):863-873. doi: 10.1007/s00702-023-02647-0. Epub 2023 May 11. Erratum in: J Neural Transm (Vienna). 2024 Sep;131(9):1145. doi: 10.1007/s00702-023-02695-6. PMID: 37165120.
- Choi SG, Tittle T, Garcia-Prada D, Kordower JH, Melki R, Killinger BA. Alpha-synuclein aggregates are phosphatase resistant. Acta Neuropathol Commun. 2024 May 31;12(1):84. doi: 10.1186/s40478-024-01785-0. PMID: 38822421; PMCID: PMC11141014.
- Dezsi L, Vecsei L. Monoamine Oxidase B Inhibitors in Parkinson's Disease. CNS Neurol Disord Drug Targets. 2017;16(4):425-439. doi: 10.2174/1871527316666170124165222. PMID: 28124620.
- Saura Marti J, Kettler R, Da Prada M, Richards JG. Molecular neuroanatomy of MAO-A and MAO-B. J Neural Transm Suppl. 1990;32:49-53. doi: 10.1007/978-3-7091-9113-2_5. PMID: 2089112.
- Fernandez HH, Chen JJ. Monoamine oxidase-B inhibition in the treatment of Parkinson's disease. Pharmacotherapy. 2007 Dec;27(12 Pt 2):174S-185S. doi: 10.1592/phco.27.12part2.174S. PMID: 18041937.
- Zahoor I, Shafi A, Haq E. Pharmacological Treatment of Parkinson’s Disease. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications; 2018 Dec 21. Chapter 7. PMID: 30702845.
- Guldberg HC, Marsden CA. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev. 1975 Jun;27(2):135-206. PMID: 1103160.
- Bonifácio MJ, Palma PN, Almeida L, Soares-da-Silva P. Catechol-O-methyltransferase and its inhibitors in Parkinson's disease. CNS Drug Rev. 2007 Fall;13(3):352-79. doi: 10.1111/j.1527-3458.2007.00020.x. PMID: 17894650; PMCID: PMC6494163.
- Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis. 2020 Apr;137:104782. doi: 10.1016/j.nbd.2020.104782. Epub 2020 Jan 25. PMID: 31991247; PMCID: PMC7064061.
- Soto-Ortolaza AI, Heckman MG, Labbé C, Serie DJ, Puschmann A, Rayaprolu S, Strongosky A, Boczarska-Jedynak M, Opala G, Krygowska-Wajs A, Barcikowska M, Czyzewski K, Lynch T, Uitti RJ, Wszolek ZK, Ross OA. GWAS risk factors in Parkinson's disease: LRRK2 coding variation and genetic interaction with PARK16. Am J Neurodegener Dis. 2013 Nov 29;2(4):287-99. PMID: 24319646; PMCID: PMC3852568.
- Axelsen TM, Woldbye DPD. Gene Therapy for Parkinson's Disease, An Update. J Parkinsons Dis. 2018;8(2):195-215. doi: 10.3233/JPD-181331. PMID: 29710735; PMCID: PMC6027861.
- Dumbhare O, Gaurkar SS. A Review of Genetic and Gene Therapy for Parkinson's Disease. Cureus. 2023 Feb 5;15(2):e34657. doi: 10.7759/cureus.34657. PMID: 36909056; PMCID: PMC9991874.
- Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006 Mar;59(3):459-66. doi: 10.1002/ana.20737. Erratum in: Ann Neurol. 2006 Dec;60(6):747. PMID: 16429411.
- Dorsey ER, Bloem BR. The Parkinson Pandemic-A Call to Action. JAMA Neurol. 2018 Jan 1;75(1):9-10. doi: 10.1001/jamaneurol.2017.3299. PMID: 29131880.
- Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997 Jun 27;276(5321):2045-7. doi: 10.1126/science.276.5321.2045. PMID: 9197268.
- Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W, Ziemssen T. Identifying prodromal Parkinson's disease: pre-motor disorders in Parkinson's disease. Mov Disord. 2012 Apr 15;27(5):617-26. doi: 10.1002/mds.24996. PMID: 22508280.
- Price DL, Koike MA, Khan A, Wrasidlo W, Rockenstein E, Masliah E, Bonhaus D. The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson's disease. Sci Rep. 2018 Nov 1;8(1):16165. doi: 10.1038/s41598-018-34490-9. PMID: 30385782; PMCID: PMC6212487.
- Polissidis A, Xilouri M, Stefanis L. The role of alpha-synuclein in the pathogenesis of Parkinson's disease: Molecular mechanisms and therapeutic strategies. J Neurochem. 2020;152(6):649-661.
- Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, Wilmarth BM, Howard H, Dunn C, Carlson A, Lawler A, Rogers SL, Falconer RA, Ahn J, Li Z, Moussa C. Nilotinib Effects in Parkinson's disease and Dementia with Lewy bodies. J Parkinsons Dis. 2016 Jul 11;6(3):503-17. doi: 10.3233/JPD-160867. PMID: 27434297; PMCID: PMC5008228.
- Simuni T, Fiske B, Merchant K, Coffey C, Klingner E, Caspell-Garcia C, Lafontant DE, Matthews H, Wyse RK, Brundin P. Nilotinib in patients with advanced Parkinsons disease: A randomized phase 2A study (NILO-PD). medRxiv. 2020.
- Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18676-81. doi: 10.1073/pnas.0508052102. Epub 2005 Dec 13. PMID: 16352719; PMCID: PMC1317945.
- Zhao Y, Dzamko N. Recent Developments in LRRK2-Targeted Therapy for Parkinson's Disease. Drugs. 2019 Jul;79(10):1037-1051. doi: 10.1007/s40265-019-01139-4. PMID: 31161537.
- Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, Lee C, Lee HJ, Lee BD, Di Monte DA, Masliah E, Lee SJ. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun. 2018 Aug 27;9(1):3465. doi: 10.1038/s41467-018-05958-z. PMID: 30150626; PMCID: PMC6110743.
- Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, Chen CM, Clark LN, Condroyer C, De Marco EV, Dürr A, Eblan MJ, Fahn S, Farrer MJ, Fung HC, Gan-Or Z, Gasser T, Gershoni-Baruch R, Giladi N, Griffith A, Gurevich T, Januario C, Kropp P, Lang AE, Lee-Chen GJ, Lesage S, Marder K, Mata IF, Mirelman A, Mitsui J, Mizuta I, Nicoletti G, Oliveira C, Ottman R, Orr-Urtreger A, Pereira LV, Quattrone A, Rogaeva E, Rolfs A, Rosenbaum H, Rozenberg R, Samii A, Samaddar T, Schulte C, Sharma M, Singleton A, Spitz M, Tan EK, Tayebi N, Toda T, Troiano AR, Tsuji S, Wittstock M, Wolfsberg TG, Wu YR, Zabetian CP, Zhao Y, Ziegler SG. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med. 2009 Oct 22;361(17):1651-61. doi: 10.1056/NEJMoa0901281. PMID: 19846850; PMCID: PMC2856322.
- Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012 Nov;11(11):986-98. doi: 10.1016/S1474-4422(12)70190-4. PMID: 23079555; PMCID: PMC4141416.
- Neumann J, Bras J, Deas E, O'Sullivan SS, Parkkinen L, Lachmann RH, Li A, Holton J, Guerreiro R, Paudel R, Segarane B, Singleton A, Lees A, Hardy J, Houlden H, Revesz T, Wood NW. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain. 2009 Jul;132(Pt 7):1783-94. doi: 10.1093/brain/awp044. Epub 2009 Mar 13. PMID: 19286695; PMCID: PMC2702833.
- Cilia R, Tunesi S, Marotta G, Cereda E, Siri C, Tesei S, Zecchinelli AL, Canesi M, Mariani CB, Meucci N, Sacilotto G, Zini M, Barichella M, Magnani C, Duga S, Asselta R, Soldà G, Seresini A, Seia M, Pezzoli G, Goldwurm S. Survival and dementia in GBA-associated Parkinson's disease: The mutation matters. Ann Neurol. 2016 Nov;80(5):662-673. doi: 10.1002/ana.24777. Epub 2016 Oct 3. PMID: 27632223.
- Koros C, Simitsi A, Stefanis L. Genetics of Parkinson's Disease: Genotype-Phenotype Correlations. Int Rev Neurobiol. 2017;132:197-231. doi: 10.1016/bs.irn.2017.01.009. Epub 2017 Mar 1. PMID: 28554408.
- Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011 Jul 8;146(1):37-52. doi: 10.1016/j.cell.2011.06.001. Epub 2011 Jun 23. PMID: 21700325; PMCID: PMC3132082.
- Sardi SP, Viel C, Clarke J, Treleaven CM, Richards AM, Park H, Olszewski MA, Dodge JC, Marshall J, Makino E, Wang B, Sidman RL, Cheng SH, Shihabuddin LS. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2699-2704. doi: 10.1073/pnas.1616152114. Epub 2017 Feb 21. PMID: 28223512; PMCID: PMC5347608.
- Abeliovich A, Hefti F, Sevigny J. Gene Therapy for Parkinson's Disease Associated with GBA1 Mutations. J Parkinsons Dis. 2021;11(s2):S183-S188. doi: 10.3233/JPD-212739. PMID: 34151863; PMCID: PMC8543272.
- Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H, Lüllmann-Rauch R, Kallemeijn WW, Gaspar P, Aerts JM, Glatzel M, Saftig P, Krainc D, Schwake M, Blanz J. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15573-8. doi: 10.1073/pnas.1405700111. Epub 2014 Oct 14. PMID: 25316793; PMCID: PMC4217458.
- Wilson BC, Weersink RA. The Yin and Yang of PDT and PTT. Photochem Photobiol. 2020 Mar;96(2):219-231. doi: 10.1111/php.13184. Epub 2019 Dec 30. PMID: 31769516.
- Li N, Sun W, Wang Y, Dong C, Yang J, Sun W, et al. Photothermal and chemodynamic combination therapy via a nanoplatform of pH-responsive biomimetic copper peroxide for cancer. ACS Nano. 2020;14(10):13105–13117.
- Gong L, Zhang X, Ge K, Yin Y, Machuki JO, Yang Y, Shi H, Geng D, Gao F. Carbon nitride-based nanocaptor: An intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer's disease. Biomaterials. 2021 Jan;267:120483. doi: 10.1016/j.biomaterials.2020.120483. Epub 2020 Oct 26. PMID: 33129186.
- Zhou H, Gong Y, Liu Y, Huang A, Zhu X, Liu J, Yuan G, Zhang L, Wei JA, Liu J. Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer's disease. Biomaterials. 2020 Apr;237:119822. doi: 10.1016/j.biomaterials.2020.119822. Epub 2020 Jan 24. PMID: 32035322.
- Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small. 2013 Jun 10;9(11):1989-97. doi: 10.1002/smll.201202538. Epub 2013 Jan 6. PMID: 23292791.
- Hsieh TY, Huang WC, Kang YD, Chu CY, Liao WL, Chen YY, Chen SY. Neurotensin-Conjugated Reduced Graphene Oxide with Multi-Stage Near-Infrared-Triggered Synergic Targeted Neuron Gene Transfection In Vitro and In Vivo for Neurodegenerative Disease Therapy. Adv Healthc Mater. 2016 Dec;5(23):3016-3026. doi: 10.1002/adhm.201600647. Epub 2016 Nov 2. PMID: 27805786.
- Gao Y, Cheng Y, Chen J, Lin D, Liu C, Zhang LK, Yin L, Yang R, Guan YQ. NIR-Assisted MgO-Based Polydopamine Nanoparticles for Targeted Treatment of Parkinson's Disease through the Blood-Brain Barrier. Adv Healthc Mater. 2022 Dec;11(23):e2201655. doi: 10.1002/adhm.202201655. Epub 2022 Oct 13. PMID: 36153843..
- Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B. The therapeutic role of minocycline in Parkinson's disease. Drugs Context. 2019 Mar 6;8:212553. doi: 10.7573/dic.212553. PMID: 30873213; PMCID: PMC6408180.
- Liu Y, Xu M, Chen Q, Guan G, Hu W, Zhao X, Qiao M, Hu H, Liang Y, Zhu H, Chen D. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int J Nanomedicine. 2015 Jul 28;10:4747-61. doi: 10.2147/IJN.S82940. PMID: 26251596; PMCID: PMC4524460.
- Yuan J, Liu H, Zhang H, Wang T, Zheng Q, Li Z. Controlled Activation of TRPV1 Channels on Microglia to Boost Their Autophagy for Clearance of Alpha-Synuclein and Enhance Therapy of Parkinson's Disease. Adv Mater. 2022 Mar;34(11):e2108435. doi: 10.1002/adma.202108435. Epub 2022 Feb 6. PMID: 35023596.
- Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B. 2023 Mar;13(3):916-941. doi: 10.1016/j.apsb.2022.10.019. Epub 2022 Oct 27. PMID: 36970219; PMCID: PMC10031267.
- Herkt M, Thum T. Pharmacokinetics and Proceedings in Clinical Application of Nucleic Acid Therapeutics. Mol Ther. 2021 Feb 3;29(2):521-539. doi: 10.1016/j.ymthe.2020.11.008. Epub 2020 Nov 12. PMID: 33188937; PMCID: PMC7854291.
- Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol. 2022 Oct 20;13:986668. doi: 10.3389/fphar.2022.986668. PMID: 36339626; PMCID: PMC9632735.
- O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018 Aug 3;9:402. doi: 10.3389/fendo.2018.00402. PMID: 30123182; PMCID: PMC6085463.
- Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci. 2016 Oct 13;17(10):1712. doi: 10.3390/ijms17101712. PMID: 27754357; PMCID: PMC5085744.
- Zhu Y, Zhao G, Li Q. Extracellular vesicles derived from microglia treated with monomeric α-synuclein ameliorate neuroinflammation by delivering miRNAs targeting PRAK. Neurosci Lett. 2022;818:137562.
- Li N, Huang Y, Wu Y, Wang Q, Ji P. Extracellular vesicles derived from monomeric α-synuclein-treated microglia ameliorate neuroinflammation by delivery of miRNAs targeting PRAK. Neurosci Lett. 2024 Jan 1;818:137562. doi: 10.1016/j.neulet.2023.137562. Epub 2023 Nov 19. PMID: 37984486.
- McCormack AL, Mak SK, Henderson JM, Bumcrot D, Farrer MJ, Di Monte DA. Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS One. 2010 Aug 11;5(8):e12122. doi: 10.1371/journal.pone.0012122. PMID: 20711464; PMCID: PMC2920329.
- Kim YC, Miller A, Lins LC, Han SW, Keiser MS, Boudreau RL, Davidson BL, Narayanan NS. RNA Interference of Human α-Synuclein in Mouse. Front Neurol. 2017 Jan 31;8:13. doi: 10.3389/fneur.2017.00013. PMID: 28197125; PMCID: PMC5281542.
- Amiri A, Barreto G, Sathyapalan T, Sahebkar A. siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Curr Neuropharmacol. 2021;19(11):1896-1911. doi: 10.2174/1570159X19666210402104054. PMID: 33797386; PMCID: PMC9185778.
- Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs. 2009 Mar-Apr;24(2):98-103; quiz 104-5. doi: 10.1097/JCN.0b013e318197a6a5. PMID: 19242274; PMCID: PMC4104807.
- Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011 Mar 22;9:29. doi: 10.1186/1479-5876-9-29. PMID: 21418664; PMCID: PMC3070641.
- Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc. 2013;8(7):1391-415. doi: 10.1038/nprot.2013.076. Epub 2013 Jun 20. PMID: 23787896.
- Danielyan L, Beer-Hammer S, Stolzing A, Schäfer R, Siegel G, Fabian C, Kahle P, Biedermann T, Lourhmati A, Buadze M, Novakovic A, Proksch B, Gleiter CH, Frey WH, Schwab M. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer's and Parkinson's disease. Cell Transplant. 2014;23 Suppl 1:S123-39. doi: 10.3727/096368914X684970. Epub 2014 Oct 9. PMID: 25302802..
- Salama M, Sobh M, Emam M, Abdalla A, Sabry D, El-Gamal M, Lotfy A, El-Husseiny M, Sobh M, Shalash A, Mohamed WM. Effect of intranasal stem cell administration on the nigrostriatal system in a mouse model of Parkinson's disease. Exp Ther Med. 2017 Mar;13(3):976-982. doi: 10.3892/etm.2017.4073. Epub 2017 Jan 20. PMID: 28450929; PMCID: PMC5403256.
- Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell Therapy for Parkinson's Disease. Cell Transplant. 2017 Sep;26(9):1551-1559. doi: 10.1177/0963689717735411. PMID: 29113472; PMCID: PMC5680961.
- Kim TW, Koo SY, Studer L. Pluripotent Stem Cell Therapies for Parkinson Disease: Present Challenges and Future Opportunities. Front Cell Dev Biol. 2020 Aug 6;8:729. doi: 10.3389/fcell.2020.00729. PMID: 32903681; PMCID: PMC7438741.
- Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020 Feb;21(2):103-115. doi: 10.1038/s41583-019-0257-7. Epub 2020 Jan 6. PMID: 31907406.
- Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases:from mechanisms to targeted therapeutics. Sig Transduct Target Ther. 2022;7:265.
- Miller KM, Patterson JR, Kochmanski J, Kemp CJ, Stoll AC, Onyekpe CU, Cole-Strauss A, Steece-Collier K, Howe JW, Luk KC, Sortwell CE. Striatal Afferent BDNF Is Disrupted by Synucleinopathy and Partially Restored by STN DBS. J Neurosci. 2021 Mar 3;41(9):2039-2052. doi: 10.1523/JNEUROSCI.1952-20.2020. Epub 2021 Jan 20. PMID: 33472823; PMCID: PMC7939095.
- Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol. 2017 Nov;54(9):7401-7459. doi: 10.1007/s12035-016-0214-7. Epub 2016 Nov 5. PMID: 27815842.
- Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. J Neural Transm Suppl. 2007;(72):113-20. doi: 10.1007/978-3-211-73574-9_14. PMID: 17982884.