Michael TC Liang*, Moustafa Bayoumi Moustafa, Nathan D Wong, Jose Rangel Rocha and Alexandra T Auslander
Volume5-Issue12
Dates: Received: 2024-12-04 | Accepted: 2024-12-18 | Published: 2024-12-20
Pages: 1581-1596
Abstract
It is important to understand the interplay of epigenetic changes, exercise and nutrition associated with the development of obesity and type-2 diabetes because it offers insights into how environment and lifestyle factors can influence gene expression without altering the genetic code. This knowledge can lead to the development of optimal interventions and preventive strategies that could potentially decrease the rising rates of obesity and type-2 diabetes. The purpose of this review is to examine the interplay of epigenetic, exercise and nutrition on inflammation and metabolic diseases including obesity and type-2 diabetes, and to acquaint the clinicians and researchers with the current advancing and evolving field of exercise and epigenetics. The proposed mechanisms involved pertain to the development of insulin resistance in peripheral tissues and type-2 diabetes including inflammation. The benefits with regular exercise include improvement in metabolic health occurring through adaptative mechanisms in the adipose tissue, skeletal muscle, and liver as well as improvement in insulin resistance. Physical activity is defined by providing physiological characteristics of physical fitness that includes aerobic or cardiorespiratory fitness, and muscular strength and muscular endurance via regular aerobic exercise or resistance training. Exercise training encompasses training modality, exercise frequency and duration. We discuss the interplay of epigenetic mechanisms in inflammation that may contribute to the current worldwide obesity and type-2 diabetes. Specifically, epigenetic induces a change in phenotype without changes in genotype and thus the epigenome can modify the genome outcome through several processes that include DNA methylation, post-translational histone modification and gene regulation mediated by non-coding RNA (ncRNA) mechanisms that have been correlated with various metabolic and inflammatory diseases.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2045
Certificate of Publication

Copyright
© 2024 Liang MTC, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Liang MTC, Moustafa MB, Wong ND, Rocha JR, Auslander AT. Interplaying Role of Epigenetic, Exercise and Nutrition in Metabolic Diseases. J Biomed Res Environ Sci. 2024 Dec 20; 5(12): 1581-1596. doi: 10.37871/jbres2045, Article ID: JBRES2045, Available at: https://www.jelsciences.com/articles/jbres2045.pdf
Subject area(s)
References
- Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, Lim WH, Huang DQ, Quek J, Fu CE, Xiao J, Syn N, Foo R, Khoo CM, Wang JW, Dimitriadis GK, Young DY, Siddiqui MS, Lam CSP, Wang Y, Figtree GA, Chan MY, Cummings DE, Noureddin M, Wong VW, Ma RCW, Mantzoros CS, Sanyal A, Muthiah MD. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023 Mar 7;35(3):414-428.e3. doi: 10.1016/j.cmet.2023.02.003. PMID: 36889281.
- Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011 Mar;32(5):590-7. doi: 10.1093/eurheartj/ehq451. Epub 2011 Jan 11. PMID: 21224291; PMCID: PMC3634159.
- Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012 Jul 21;380(9838):219-29. doi: 10.1016/S0140-6736(12)61031-9. PMID: 22818936; PMCID: PMC3645500.
- Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci. 2022 Jan 25;23(3):1341. doi: 10.3390/ijms23031341. PMID: 35163268; PMCID: PMC8836029.
- Lastialno MP, Bashari MH, Ariyanto EF. Current Updates on the Understanding of the Role of DNA Methylation on Obesity. Diabetes Metab Syndr Obes. 2024 Aug 27;17:3177-3186. doi: 10.2147/DMSO.S471348. PMID: 39220797; PMCID: PMC11365516.
- Thaker VV. GENETIC AND EPIGENETIC CAUSES OF OBESITY. Adolesc Med State Art Rev. 2017 Fall;28(2):379-405. PMID: 30416642; PMCID: PMC6226269.
- Li S, Wang Y, Li Z, Long C, Zhou Q, Chen Q. The links between adipose tissue DNA methylation, obesity, and insulin resistance: A protocol for systematic review. Medicine (Baltimore). 2022 Nov 25;101(47):e31261. doi: 10.1097/MD.0000000000031261. PMID: 36451420; PMCID: PMC9704914.
- Esteves JV, Stanford KI. Exercise as a tool to mitigate metabolic disease. Am J Physiol Cell Physiol. 2024 Sep 1;327(3):C587-C598. doi: 10.1152/ajpcell.00144.2024. Epub 2024 Jul 9. PMID: 38981607; PMCID: PMC11427015.
- Félix-Soriano E, Stanford KI. Exerkines and redox homeostasis. Redox Biol. 2023 Jul;63:102748. doi: 10.1016/j.redox.2023.102748. Epub 2023 May 20. PMID: 37247469; PMCID: PMC10236471.
- Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022 May;18(5):273-289. doi: 10.1038/s41574-022-00641-2. Epub 2022 Mar 18. PMID: 35304603; PMCID: PMC9554896.
- American College of Sports Medicine. ACSM's Guidelines for Exercise Testing and prescription. 10th ed. Philadelphia: Wolters Kluwer; 2018.
- Allen TW, Liang MTC. Foundations and applications of exercise science. 2nd ed. Dubuque: Kendall Hunt; 2023.
- Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011 Jul;43(7):1334-59. doi: 10.1249/MSS.0b013e318213fefb. PMID: 21694556.
- Physical Activity Guidelines Advisory Committee Report. California: U.S. Department of Health and Human Services. 2008.
- Ji Y, Atakan MM, Yan X, Wu J, Kuang J, Peng L. Reallocating just 10 min to moderate-to-vigorous physical activity from other components of 24-hour movement behaviors improves cardiovascular health in adults. BMC Public Health. 2024 Jul 3;24(1):1768. doi: 10.1186/s12889-024-19255-6. PMID: 38961409; PMCID: PMC11221122.
- Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, Jung ME, Gibala MJ. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol (1985). 2011 Dec;111(6):1554-60. doi: 10.1152/japplphysiol.00921.2011. Epub 2011 Aug 25. PMID: 21868679.
- Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun XG, Whipp BJ. Principles of Exercise Testing and Interpretation. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2018.
- Dutto DJ, Liang MTC, Braun WA, Bassin SL, Wong ND, Arnaud SB. Effect of 6-month high-impact step aerobics and resistance training on BMD and tibial bending strength in sedentary premenopausal women. Osteoporos Int. 2022 Mar;33(3):695-701. doi: 10.1007/s00198-021-06106-y. Epub 2021 Oct 9. PMID: 34625826.
- American College of Sports Medicine; Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009 Jul;41(7):1510-30. doi: 10.1249/MSS.0b013e3181a0c95c. PMID: 19516148.
- Latham NK, Bennett DA, Stretton CM, Anderson CS. Systematic review of progressive resistance strength training in older adults. J Gerontol A Biol Sci Med Sci. 2004 Jan;59(1):48-61. doi: 10.1093/gerona/59.1.m48. PMID: 14718486.
- Liang MTC, Allen TW. Exercise prescription for healthy living. Dubuque: Kendall Hunt; 2023.
- Xu X, Su S, Barnes VA. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2023;8(5):522-533. doi: 10.4161/epi.24506.
- Su Z, Wang J, Xiao C, Zhong W, Liu J, Liu X, Zhu YZ. Functional role of Ash2l in oxLDL induced endothelial dysfunction and atherosclerosis. Cell Mol Life Sci. 2024 Jan 27;81(1):62. doi: 10.1007/s00018-024-05130-5. PMID: 38280036; PMCID: PMC10821849.
- Nadiger N, Veed JK, Chinya Nataraj P, Mukhopadhyay A. DNA methylation and type 2 diabetes: a systematic review. Clin Epigenetics. 2024 May 16;16(1):67. doi: 10.1186/s13148-024-01670-6. PMID: 38755631; PMCID: PMC11100087.
- Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014 Sep 9;2:49. doi: 10.3389/fcell.2014.00049. PMID: 25364756; PMCID: PMC4207041.
- Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004 May 27;429(6990):457-63. doi: 10.1038/nature02625. PMID: 15164071.
- Bayarsaihan J. Epigenetic mechanisms in human disease. Dent Res. 2011;90:9-17.
- Gonzalez-Jaramillo V, Jaramillo M, González J. Inflammation and its role in cardiovascular diseases. Int J Inflamm. 2019;2019:6273680.
- Stylianou MP, Bashari MH, Ariyanto EF. Current updates on the understanding of the role of DNA methylation in obesity. J Inflamm Res. 2024;17:3177-3186.
- Lastialno MP, Bashari MH, Ariyanto EF. Current Updates on the Understanding of the Role of DNA Methylation on Obesity. Diabetes Metab Syndr Obes. 2024 Aug 27;17:3177-3186. doi: 10.2147/DMSO.S471348. PMID: 39220797; PMCID: PMC11365516.
- Butts B, Gary RA, Dunbar SB, Butler J. Methylation of Apoptosis-Associated Speck-Like Protein With a Caspase Recruitment Domain and Outcomes in Heart Failure. J Card Fail. 2016 May;22(5):340-6. doi: 10.1016/j.cardfail.2015.12.004. Epub 2015 Dec 14. PMID: 26700661; PMCID: PMC4861674.
- Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes. 2024 Sep 21;17:3557-3576. doi: 10.2147/DMSO.S479077. PMID: 39323929; PMCID: PMC11423826.
- Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J. 2023 Feb;290(3):620-648. doi: 10.1111/febs.16306. Epub 2021 Dec 9. PMID: 34847289.
- Bedi O, Aggarwal S, Trehanpati N, Ramakrishna G, Krishan P. Molecular and Pathological Events Involved in the Pathogenesis of Diabetes-Associated Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol. 2019 Sep-Oct;9(5):607-618. doi: 10.1016/j.jceh.2018.10.004. Epub 2018 Nov 12. PMID: 31695251; PMCID: PMC6823706.
- Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, Scherer P, Rossetti L, Barzilai N. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes. 2002 Oct;51(10):2951-8. doi: 10.2337/diabetes.51.10.2951. PMID: 12351432.
- Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003 May 16;300(5622):1140-2. doi: 10.1126/science.1082889. PMID: 12750520; PMCID: PMC3004429.
- Rytka JM, Wueest S, Schoenle EJ, Konrad D. The portal theory supported by venous drainage-selective fat transplantation. Diabetes. 2011 Jan;60(1):56-63. doi: 10.2337/db10-0697. Epub 2010 Oct 18. PMID: 20956499; PMCID: PMC3012197.
- Ramírez-Alarcón K, Victoriano M, Mardones L, Villagran M, Al-Harrasi A, Al-Rawahi A, Cruz-Martins N, Sharifi-Rad J, Martorell M. Phytochemicals as Potential Epidrugs in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne). 2021 Jun 1;12:656978. doi: 10.3389/fendo.2021.656978. PMID: 34140928; PMCID: PMC8204854.
- Weir GC, Cavelti-Weder C, Bonner-Weir S. Stem cell approaches for diabetes: towards beta cell replacement. Genome Med. 2011 Sep 27;3(9):61. doi: 10.1186/gm277. PMID: 21951399; PMCID: PMC3239236.
- Ding Q, Gao Z, Chen K, Zhang Q, Hu S, Zhao L. Inflammation-Related Epigenetic Modification: The Bridge Between Immune and Metabolism in Type 2 Diabetes. Front Immunol. 2022 May 6;13:883410. doi: 10.3389/fimmu.2022.883410. PMID: 35603204; PMCID: PMC9120428.
- Yu X, Mao W, Zhai Y, Tong C, Liu M, Ma L, Yu X, Li S. Anti-tumor activity of metformin: from metabolic and epigenetic perspectives. Oncotarget. 2017 Jan 17;8(3):5619-5628. doi: 10.18632/oncotarget.13639. PMID: 27902459; PMCID: PMC5354934.
- Demirsoy İH, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L, Aras N. Profiles of Circulating MiRNAs Following Metformin Treatment in Patients with Type 2 Diabetes. J Med Biochem. 2018 Dec 1;37(4):499-506. doi: 10.2478/jomb-2018-0009. PMID: 30584410; PMCID: PMC6298473.
- Barrón-Cabrera E, Ramos-Lopez O, González-Becerra K, Riezu-Boj JI, Milagro FI, Martínez-López E, Martínez JA. Epigenetic Modifications as Outcomes of Exercise Interventions Related to Specific Metabolic Alterations: A Systematic Review. Lifestyle Genom. 2019;12(1-6):25-44. doi: 10.1159/000503289. Epub 2019 Sep 23. PMID: 31546245; PMCID: PMC6921698.
- Nishida Y, Hara M, Higaki Y, Taguchi N, Nakamura K, Nanri H, Horita M, Shimanoe C, Yasukata J, Miyoshi N, Yamada Y, Higashimoto K, Soejima H, Tanaka K. Habitual Light-intensity Physical Activity and ASC Methylation in a Middle-aged Population. Int J Sports Med. 2019 Sep;40(10):670-677. doi: 10.1055/a-0965-1374. Epub 2019 Jul 23. PMID: 31342477.
- O'Bryan KR, Doering TM, Morton RW, Coffey VG, Phillips SM, Cox GR. Do multi-ingredient protein supplements augment resistance training-induced gains in skeletal muscle mass and strength? A systematic review and meta-analysis of 35 trials. Br J Sports Med. 2020 May;54(10):573-581. doi: 10.1136/bjsports-2018-099889. Epub 2019 Mar 1. Erratum in: Br J Sports Med. 2021 Feb;55(3): e4. doi: 10.1136/bjsports-2018-099889corr1. PMID: 30824459.
- Abbate A. The heart on fire: inflammasome and cardiomyopathy. Exp Physiol. 2013 Feb;98(2):385. doi: 10.1113/expphysiol.2012.069021. PMID: 23349530.
- Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010 Mar;10(3):210-5. doi: 10.1038/nri2725. Epub 2010 Feb 19. PMID: 20168318.
- Butts B, Butler J, Dunbar SB, Corwin E, Gary RA. Effects of Exercise on ASC Methylation and IL-1 Cytokines in Heart Failure. Med Sci Sports Exerc. 2018 Sep;50(9):1757-1766. doi: 10.1249/MSS.0000000000001641. PMID: 29683921; PMCID: PMC6095733.
- Nishida Y, Hara M, Higaki Y, Taguchi N, Nakamura K, Nanri H, Horita M, Shimanoe C, Yasukata J, Miyoshi N, Yamada Y, Higashimoto K, Soejima H, Tanaka K. Habitual Light-intensity Physical Activity and ASC Methylation in a Middle-aged Population. Int J Sports Med. 2019 Sep;40(10):670-677. doi: 10.1055/a-0965-1374. Epub 2019 Jul 23. PMID: 31342477.
- Zhang Y, Hashimoto S, Fujii C, Hida S, Ito K, Matsumura T, Sakaizawa T, Morikawa M, Masuki S, Nose H, Higuchi K, Nakajima K, Taniguchi S. NFκB2 Gene as a Novel Candidate that Epigenetically Responds to Interval Walking Training. Int J Sports Med. 2015 Aug;36(9):769-75. doi: 10.1055/s-0035-1547221. Epub 2015 Apr 22. PMID: 25901949.
- Butts B, Butler J, Dunbar SB, Corwin EJ, Gary RA. ASC Methylation and Interleukin-1β Are Associated with Aerobic Capacity in Heart Failure. Med Sci Sports Exerc. 2017 Jun;49(6):1072-1078. doi: 10.1249/MSS.0000000000001200. PMID: 28072632; PMCID: PMC5433894.
- Nishida H, Onishi K, Kurose S, Tsutsumi H, Miyauchi T, Takao N, Yoshiuchi S, Fujii A, Kimura Y. Changes in Body Composition and FTO Whole Blood DNA Methylation Among Japanese Women: A Randomized Clinical Trial of Weight-Loss Program. Diabetes Metab Syndr Obes. 2020 Jun 23;13:2157-2167. doi: 10.2147/DMSO.S248769. PMID: 32606874; PMCID: PMC7320880.
- Machado OAS, Diniz VLS, Passos MEP, de Oliveira HH, Santos-Oliveira LC, Alecrim AL, Bertola Lobato T, Manoel R, Correa I, Silva EB, de Oliveira Poma S, Mendes de Almeida M, Pithon-Curi TC, Diniz S, Levada-Pires AC, Curi R, Masi LN, Hirabara SM, Gorjão R. Physical exercise increases global and gene-specific (interleukin-17 and interferon-γ) DNA methylation in lymphocytes from aged women. Exp Physiol. 2021 Sep;106(9):1878-1885. doi: 10.1113/EP089673. Epub 2021 Jul 22. PMID: 34229361.
- Światowy WJ, Drzewiecka H, Kliber M, Sąsiadek M, Karpiński P, Pławski A, Jagodziński PP. Physical Activity and DNA Methylation in Humans. Int J Mol Sci. 2021 Nov 30;22(23):12989. doi: 10.3390/ijms222312989. PMID: 34884790; PMCID: PMC8657566.
- Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013 Jan;38(1):23-38. doi: 10.1038/npp.2012.112. Epub 2012 Jul 11. PMID: 22781841; PMCID: PMC3521964.
- Xu X, Su S, Barnes VA, De Miguel C, Pollock J, Ownby D, Shi H, Zhu H, Snieder H, Wang X. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2013 May;8(5):522-33. doi: 10.4161/epi.24506. Epub 2013 Apr 17. PMID: 23644594; PMCID: PMC3741222.
- Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, Tan S, Fiorito G, Franke L, Guarrera S, Kasela S, Kriebel J, Richmond RC, Adamo M, Afzal U, Ala-Korpela M, Albetti B, Ammerpohl O, Apperley JF, Beekman M, Bertazzi PA, Black SL, Blancher C, Bonder MJ, Brosch M, Carstensen-Kirberg M, de Craen AJ, de Lusignan S, Dehghan A, Elkalaawy M, Fischer K, Franco OH, Gaunt TR, Hampe J, Hashemi M, Isaacs A, Jenkinson A, Jha S, Kato N, Krogh V, Laffan M, Meisinger C, Meitinger T, Mok ZY, Motta V, Ng HK, Nikolakopoulou Z, Nteliopoulos G, Panico S, Pervjakova N, Prokisch H, Rathmann W, Roden M, Rota F, Rozario MA, Sandling JK, Schafmayer C, Schramm K, Siebert R, Slagboom PE, Soininen P, Stolk L, Strauch K, Tai ES, Tarantini L, Thorand B, Tigchelaar EF, Tumino R, Uitterlinden AG, van Duijn C, van Meurs JB, Vineis P, Wickremasinghe AR, Wijmenga C, Yang TP, Yuan W, Zhernakova A, Batterham RL, Smith GD, Deloukas P, Heijmans BT, Herder C, Hofman A, Lindgren CM, Milani L, van der Harst P, Peters A, Illig T, Relton CL, Waldenberger M, Järvelin MR, Bollati V, Soong R, Spector TD, Scott J, McCarthy MI, Elliott P, Bell JT, Matullo G, Gieger C, Kooner JS, Grallert H, Chambers JC. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017 Jan 5;541(7635):81-86. doi: 10.1038/nature20784. Epub 2016 Dec 21. PMID: 28002404; PMCID: PMC5570525.
- Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman DJ, Zierath JR. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012 Mar 7;15(3):405-11. doi: 10.1016/j.cmet.2012.01.001. PMID: 22405075.
- Tremblay BL, Guénard F, Rudkowska I, Lemieux S, Couture P, Vohl MC. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clin Epigenetics. 2017 Apr 26;9:43. doi: 10.1186/s13148-017-0345-3. PMID: 28450971; PMCID: PMC5405524.
- Morikawa M, Nakano S, Mitsui N, Murasawa H, Masuki S, Nose H. Effects of dried tofu supplementation during interval walking training on the methylation of the NFKB2 gene in the whole blood of older women. J Physiol Sci. 2018 Nov;68(6):749-757. doi: 10.1007/s12576-017-0589-x. Epub 2017 Dec 29. PMID: 29285709; PMCID: PMC10717127.
- Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes. 2015 Jul;64(7):2361-8. doi: 10.2337/db15-0227. Epub 2015 Jun 7. Erratum in: Diabetes. 2015 Sep;64(9):3334. doi: 10.2337/db15-er09. PMID: 26050668; PMCID: PMC4477356.
- Richterova B, Stich V, Moro C, Polak J, Klimcakova E, Majercik M, Harant I, Viguerie N, Crampes F, Langin D, Lafontan M, Berlan M. Effect of endurance training on adrenergic control of lipolysis in adipose tissue of obese women. J Clin Endocrinol Metab. 2004 Mar;89(3):1325-31. doi: 10.1210/jc.2003-031001. PMID: 15001629.
- Lehnig AC, Dewal RS, Baer LA, Kitching KM, Munoz VR, Arts PJ, Sindeldecker DA, May FJ, Lauritzen HPMM, Goodyear LJ, Stanford KI. Exercise Training Induces Depot-Specific Adaptations to White and Brown Adipose Tissue. iScience. 2019 Jan 25;11:425-439. doi: 10.1016/j.isci.2018.12.033. Epub 2019 Jan 3. PMID: 30661000; PMCID: PMC6348298.
- Honkala SM, Motiani P, Kivelä R, Hemanthakumar KA, Tolvanen E, Motiani KK, Eskelinen JJ, Virtanen KA, Kemppainen J, Heiskanen MA, Löyttyniemi E, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise training improves adipose tissue metabolism and vasculature regardless of baseline glucose tolerance and sex. BMJ Open Diabetes Res Care. 2020 Aug;8(1):e000830. doi: 10.1136/bmjdrc-2019-000830. PMID: 32816872; PMCID: PMC7437884.
- Vidal P, Stanford KI. Exercise-Induced Adaptations to Adipose Tissue Thermogenesis. Front Endocrinol (Lausanne). 2020 Apr 29;11:270. doi: 10.3389/fendo.2020.00270. PMID: 32411099; PMCID: PMC7201000.
- Barbosa MA, Guerra-Sá R, De Castro UGM, de Lima WG, Dos Santos RAS, Campagnole-Santos MJ, Alzamora AC. Physical training improves thermogenesis and insulin pathway, and induces remodeling in white and brown adipose tissues. J Physiol Biochem. 2018 Aug;74(3):441-454. doi: 10.1007/s13105-018-0637-x. Epub 2018 May 25. PMID: 29797227.
- Wu MV, Bikopoulos G, Hung S, Ceddia RB. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure. J Biol Chem. 2014 Dec 5;289(49):34129-40. doi: 10.1074/jbc.M114.591008. Epub 2014 Oct 25. PMID: 25344623; PMCID: PMC4256346.
- Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, Alcantara JMA, Amaro-Gahete FJ, Martinez-Avila WD, Merchan-Ramirez E, Muñoz-Hernandez V, Osuna-Prieto FJ, Jurado-Fasoli L, Xu H, Ortiz-Alvarez L, Arias-Tellez MJ, Mendez-Gutierrez A, Labayen I, Ortega FB, Schönke M, Rensen PCN, Aguilera CM, Llamas-Elvira JM, Gil Á, Ruiz JR. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun. 2022 Sep 12;13(1):5259. doi: 10.1038/s41467-022-32502-x. PMID: 36097264; PMCID: PMC9467993.
- Esteves JV, Stanford KI. Exercise as a tool to mitigate metabolic disease. Am J Physiol Cell Physiol. 2024;327:C587-598. doi:10.1152/ajpcell.00144.2024.
- Russo D, Capolupo L, Loomba JS, Sticco L, D'Angelo G. Glycosphingolipid metabolism in cell fate specification. J Cell Sci. 2018 Dec 17;131(24):jcs219204. doi: 10.1242/jcs.219204. PMID: 30559216.
- de Gonzalo-Calvo D, Dávalos A, Montero A, García-González Á, Tyshkovska I, González-Medina A, Soares SM, Martínez-Camblor P, Casas-Agustench P, Rabadán M, Díaz-Martínez ÁE, Úbeda N, Iglesias-Gutiérrez E. Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J Appl Physiol (1985). 2015 Jul 15;119(2):124-34. doi: 10.1152/japplphysiol.00077.2015. Epub 2015 May 21. PMID: 25997943.Dorneles et al. Oxid Med Cell Longev. 2017; 2017:1530230.
- RANDLE PJ, GARLAND PB, HALES CN, NEWSHOLME EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785-9. doi: 10.1016/s0140-6736(63)91500-9. PMID: 13990765.
- Brons C, Jacobsen S, Nilson E, Reonn T, Jensen CB, Storgaard H. A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab. 2010;95:3048-3056. doi:10.1210/jc.2009-2413.
- Aslibekyan S, Wiener HW, Havel PJ, Stanhope KL, O'Brien DM, Hopkins SE, Absher DM, Tiwari HK, Boyer BB. DNA methylation patterns are associated with n-3 fatty acid intake in Yup'ik people. J Nutr. 2014 Apr;144(4):425-30. doi: 10.3945/jn.113.187203. Epub 2014 Jan 29. PMID: 24477300; PMCID: PMC3952620.
- Silva-Martínez GA, Rodríguez-Ríos D, Alvarado-Caudillo Y, Vaquero A, Esteller M, Carmona FJ, Moran S, Nielsen FC, Wickström-Lindholm M, Wrobel K, Wrobel K, Barbosa-Sabanero G, Zaina S, Lund G. Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics. 2016 May 3;11(5):321-34. doi: 10.1080/15592294.2016.1161873. Epub 2016 Apr 18. PMID: 27088456; PMCID: PMC4889238.
- Chiu DT, Hamlat EJ, Zhang J, Epel ES, Laraia BA. Essential Nutrients, Added Sugar Intake, and Epigenetic Age in Midlife Black and White Women: NIMHD Social Epigenomics Program. JAMA Netw Open. 2024 Jul 1;7(7):e2422749. doi: 10.1001/jamanetworkopen.2024.22749. PMID: 39073813; PMCID: PMC11287388.
- Lu AT, Binder AM, Zhang J, Yan Q, Reiner AP, Cox SR, Corley J, Harris SE, Kuo PL, Moore AZ, Bandinelli S, Stewart JD, Wang C, Hamlat EJ, Epel ES, Schwartz JD, Whitsel EA, Correa A, Ferrucci L, Marioni RE, Horvath S. DNA methylation GrimAge version 2. Aging (Albany NY). 2022 Dec 14;14(23):9484-9549. doi: 10.18632/aging.204434. Epub 2022 Dec 14. PMID: 36516495; PMCID: PMC9792204.
- Centers for Disease Control and Prevention [CDC] National Center for Birth Defects and Developmental Disabilities. Epigenetics, Health, and Disease. 2024.
- Sae-Lee C, Corsi S, Barrow TM, Kuhnle GGC, Bollati V, Mathers JC, Byun HM. Dietary Intervention Modifies DNA Methylation Age Assessed by the Epigenetic Clock. Mol Nutr Food Res. 2018 Dec;62(23):e1800092. doi: 10.1002/mnfr.201800092. Epub 2018 Nov 2. PMID: 30350398.
- Galkin F, Kovalchuk O, Koldasbayeva D, Zhavoronkov A, Bischof E. Stress, diet, exercise: Common environmental factors and their impact on epigenetic age. Ageing Res Rev. 2023 Jul;88:101956. doi: 10.1016/j.arr.2023.101956. Epub 2023 May 19. PMID: 37211319.
- Walaszczyk E, Luijten M, Spijkerman AMW, Bonder MJ, Lutgers HL, Snieder H, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV. DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: a systematic review and replication in a case-control sample of the Lifelines study. Diabetologia. 2018 Feb;61(2):354-368. doi: 10.1007/s00125-017-4497-7. Epub 2017 Nov 21. PMID: 29164275; PMCID: PMC6448925.
- Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019 Jan 21;11(2):303-327. doi: 10.18632/aging.101684. PMID: 30669119; PMCID: PMC6366976.
- Divella R, Daniele A, Savino E, Paradiso A. Anticancer Effects of Nutraceuticals in the Mediterranean Diet: An Epigenetic Diet Model. Cancer Genomics Proteomics. 2020 Jul-Aug;17(4):335-350. doi: 10.21873/cgp.20193. PMID: 32576579; PMCID: PMC7367609.
- Kenanoglu S, Gokce N, Akalin H, Ergoren MC, Beccari T, Bertelli M, Dundar M. Implication of the Mediterranean diet on the human epigenome. J Prev Med Hyg. 2022 Oct 17;63(2 Suppl 3):E44-E55. doi: 10.15167/2421-4248/jpmh2022.63.2S3.2746. PMID: 36479488; PMCID: PMC9710399.
- Sacks FM, Obarzanek E, Windhauser MM, Svetkey LP, Vollmer WM, McCullough M, Karanja N, Lin PH, Steele P, Proschan MA, et al. Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH). A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann Epidemiol. 1995 Mar;5(2):108-18. doi: 10.1016/1047-2797(94)00055-x. PMID: 7795829.
- Guillaumet-Adkins A, Yañez Y, Peris-Diaz MD, Calabria I, Palanca-Ballester C, Sandoval J. Epigenetics and Oxidative Stress in Aging. Oxid Med Cell Longev. 2017;2017:9175806. doi: 10.1155/2017/9175806. Epub 2017 Jul 20. PMID: 28808499; PMCID: PMC5541801.
- Shannon OM, Ashor AW, Scialo F, Saretzki G, Martin-Ruiz C, Lara J, Matu J, Griffiths A, Robinson N, Lillà L, Stevenson E, Stephan BCM, Minihane AM, Siervo M, Mathers JC. Mediterranean diet and the hallmarks of ageing. Eur J Clin Nutr. 2021 Aug;75(8):1176-1192. doi: 10.1038/s41430-020-00841-x. Epub 2021 Jan 29. PMID: 33514872.
- Fenech M. The role of nutrition in DNA replication, DNA damage prevention and DNA repair. In: Principles of nutrigenetics and nutrigenomics: Fundamentals of individualized nutrition. Elsevier. 2020:27-32. doi: 10.1016/B978-0-12-804572-5.00004-5.
- Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843-54. doi: 10.1016/0092-8674(93)90529-y. PMID: 8252621.
- Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993 Dec 3;75(5):855-62. doi: 10.1016/0092-8674(93)90530-4. PMID: 8252622.
- Callaway E, Sanderson K. Medicine Nobel awarded for gene-regulating 'microRNAs'. Nature. 2024 Oct;634(8034):524-525. doi: 10.1038/d41586-024-03212-9. PMID: 39375555.
- Ren J, Zhou L, Li S, Zhang Q, Xiao X. The roles of the gut microbiota, metabolites, and epigenetics in the effects of maternal exercise on offspring metabolism. Am J Physiol Endocrinol Metab. 2024 Dec 1;327(6):E760-E772. doi: 10.1152/ajpendo.00200.2024. Epub 2024 Nov 13. PMID: 39535269.