Alberto Conde Mellado*, Nere Arroniz and Leire Frances
Volume5-Issue10
Dates: Received: 2024-09-24 | Accepted: 2024-10-04 | Published: 2024-10-07
Pages: 1270-1277
Abstract
New technologies arise the opportunity to understand the complex systemic background of multidimensional diseases and allow a personalized approach. Continuous Glucose Monitoring (CGM) sensors and their broad use have been key in the discovery of the metabolic heterogeneity surrounding many disorders such as diabetes type II, and has placed the scientific community a step closer to determining which factors are contributing to their complications and evolution. However, gathering data extending beyond glucose levels linked to lifestyle factors, such as nutrition, physical activity, sleep quality, and stress, poses a significant challenge in terms of representation, considering the substantial amount of data involved. To comprehend the relationship between these variables in a practical manner that empowers individuals to make choices enhancing their quality of life, there is a need for new graphics. These graphics would enable the observation of the overall framework in a contextualized manner and assist in establishing clear visual goals. This article introduces glycemic matrix and metabolic segmentation, a new method for representing and evaluating functional profiles by combining glucose and lifestyle data. In this early-phase trial, the potential of this approach to represent the complete glycemic spectrum within its context and adapt to a diverse range of objectives is demonstrated. Moreover, it is a promising tool to finally be able to cluster metabolic types through artificial intelligence (AI) and adapt clinical interventions to the metabolic heterogeneity. This research is a private research under Glucovibes companies R&D initiatives.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2014
Certificate of Publication

Copyright
© 2024 Mellado AC, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Mellado AC, Arróniz N, Francés L. Glycemic Matrix and Segmentation: A New Metabolic Visualization and Analysis Tool. J Biomed Res Environ Sci. 2024 Oct 07; 5(10): 1270-1277. doi: 10.37871/jbres2014, Article ID: JBRES2014, Available at: https://www.jelsciences.com/articles/jbres2014.pdf
Subject area(s)
References
- Rodbard D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol Ther. 2016 Feb;18 Suppl 2(Suppl 2):S3-S13. doi: 10.1089/dia.2015.0417. PMID: 26784127; PMCID: PMC4717493.
- Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, Bosi E, Buckingham BA, Cefalu WT, Close KL, Cobelli C, Dassau E, DeVries JH, Donaghue KC, Dovc K, Doyle FJ 3rd, Garg S, Grunberger G, Heller S, Heinemann L, Hirsch IB, Hovorka R, Jia W, Kordonouri O, Kovatchev B, Kowalski A, Laffel L, Levine B, Mayorov A, Mathieu C, Murphy HR, Nimri R, Nørgaard K, Parkin CG, Renard E, Rodbard D, Saboo B, Schatz D, Stoner K, Urakami T, Weinzimer SA, Phillip M. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019 Aug;42(8):1593-1603. doi: 10.2337/dci19-0028. Epub 2019 Jun 8. PMID: 31177185; PMCID: PMC6973648.
- Hall H, Perelman D, Breschi A, Limcaoco P, Kellogg R, McLaughlin T, Snyder M. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol. 2018 Jul 24;16(7):e2005143. doi: 10.1371/journal.pbio.2005143. PMID: 30040822; PMCID: PMC6057684.
- Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM. The Fallacy of Average: How Using HbA1c Alone to Assess Glycemic Control Can Be Misleading. Diabetes Care. 2017 Aug;40(8):994-999. doi: 10.2337/dc17-0636. PMID: 28733374; PMCID: PMC5521971.
- Shrom KC, Arbeláez AM. Discrepancy between hemoglobin A1c and average glucose based on continuous glucose monitoring data in non-diabetic adults: Are we still missing postprandial hyperglycemia? Journal of Diabetes Science and Technology. 2010;4(3):543-548.
- Rodbard D. Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S55-67. doi: 10.1089/dia.2008.0132. Erratum in: Diabetes Technol Ther. 2018 Apr;20(4):320. doi: 10.1089/dia.2008.0132.correx. PMID: 19469679.
- Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B; American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009 Jan;32(1):193-203. doi: 10.2337/dc08-9025. Epub 2008 Oct 22. PMID: 18945920; PMCID: PMC2606813.
- Shah VN, Shoskes A, Tawfik P. Continuous glucose monitoring versus blood glucose monitoring in adults with type 1 diabetes using insulin injections: A systematic review and meta-analysis. Diabetes Care. 2019;42(9):1717-1724.
- Brod M, Christensen T, Thomsen TL, Bushnell DM. The impact of non-severe hypoglycemic events on work productivity and diabetes management. Value Health. 2011 Jul-Aug;14(5):665-71. doi: 10.1016/j.jval.2011.02.001. PMID: 21839404.
- Davis SN, Shavers C, Costa F. Prevention of severe hypoglycemia by methylprednisolone during an acute episode of hypoglycemia in patients with type 1 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism. 2005;90(4):2057-2061.
- Jauch-Chara K, Oltmanns KM. Hypoglycemia and Cognitive Dysfunction in Diabetic Patients. Diabetes, Obesity and Metabolism. 2007;9(4):523-531.
- Lu J, Ma X, Shen Y. Time in Range Is Associated with Cardiovascular Outcomes in Type 2 Diabetes Patients. Journal of Clinical Endocrinology & Metabolism. 2020;105(7):161.
- Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006 Apr 12;295(14):1681-7. doi: 10.1001/jama.295.14.1681. PMID: 16609090.
- Hirsch IB. Glycemic Variability and Diabetes Complications: Does It Matter? Of Course It Does! Diabetes Care. 2015 Aug;38(8):1610-4. doi: 10.2337/dc14-2898. PMID: 26207054.
- Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014 Mar 22;383(9922):1084-94. doi: 10.1016/S0140-6736(13)62219-9. Epub 2013 Dec 3. PMID: 24315621.
- Matabuena M, Petersen A, Vidal JC, Gude F. Glucodensities: A new representation of glucose profiles using distributional data analysis. Stat Methods Med Res. 2021 Jun;30(6):1445-1464. doi: 10.1177/0962280221998064. Epub 2021 Mar 24. PMID: 33760665; PMCID: PMC8189016.
- Conn VS, Hafdahl AR, Brown LM. Meta-analysis of quality-of-life outcomes from physical activity interventions. Nurs Res. 2009 May-Jun;58(3):175-83. doi: 10.1097/NNR.0b013e318199b53a. PMID: 19448521; PMCID: PMC3159686.
- Hulman A, Simmons RK, Brunner EJ. Beyond Glucose: The Role of Physiological Factors in the Diabetes Risk Continuum. The Lancet Diabetes & Endocrinology. 2021;9(3):158-168.
- Lal RA, Maahs DM. Clinical Use of Continuous Glucose Monitoring in Pediatrics. Diabetes Technol Ther. 2017 May;19(S2):S37-S43. doi: 10.1089/dia.2017.0013. PMID: 28541138; PMCID: PMC5444498.
- Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015 Nov 19;163(5):1079-1094. doi: 10.1016/j.cell.2015.11.001. PMID: 26590418.
- Buschur EO, Faulds E, Dungan K. CGM in the Hospital: Is It Ready for Prime Time? Curr Diab Rep. 2022 Sep;22(9):451-460. doi: 10.1007/s11892-022-01484-x. Epub 2022 Jul 7. PMID: 35796882; PMCID: PMC9261155.
- R documentation: Kernel density estimation.
- Allen NA, Fain JA, Braun B, Chipkin SR. Continuous glucose monitoring counseling improves physical activity behaviors of individuals with type 2 diabetes: A randomized clinical trial. Diabetes Res Clin Pract. 2008 Jun;80(3):371-9. doi: 10.1016/j.diabres.2008.01.006. Epub 2008 Mar 4. PMID: 18304674; PMCID: PMC2430041.
- Fitipaldi H, McCarthy MI, Florez JC. Genetic basis of type 2 diabetes and its implications for precision medicine. Nature Medicine. 208;24(11):1793-1800.
- Dennis JM, Shields BM, Henley WE. Precision Medicine in Diabetes: A Population-Based Study of Individualized Treatment Responses. Diabetes Care. 2019;42(2):362-369.