Wei Shi*, Yuki Osaki, Mariko Murayama, Kenji Hashimoto and Xinwei Zhao*
Volume5-Issue9
Dates: Received: 2024-08-29 | Accepted: 2024-09-28 | Published: 2024-09-30
Pages: 1229-1237
Abstract
Solid Electrolytes (SE) for all solid Sodium-Ion Batteries (SIB) have been attracting much attention as an alternative energy storage system, which have the advantage of being extremely safe because it can be charged quickly and is nonflammable. We have synthesized anti-perovskite type Na3OX (X = Br, and I) electrolytes with high purity. It was confirmed that a large crystal strain was introduced by eutecticization, which reduced the activation energy of Na ion conduction and lead to an improvement of the electric conductivity. In our previous work, an ionic conductivity of σ = 1.55x10-7 S/cm for Na3OBr0.6I0.4, and the activation energy was also reduced from 1.14eV to 0.64eV. These values, however, are still poor for a practical application as SE. In this paper, we focused on the Na3OBr1-xIx (x = 0 to 0.4) series and increased the synthesizing time from 3x6 to 3 x 9 hours. An extremely low activation energy of 0.25eV and high ionic conductivity of σ = 2.6x10-3 S/cm at 90oC and have been observed.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2010
Certificate of Publication

Copyright
© 2024 Shi W, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Shi W, Osaki Y, Murayama M, Hashimoto K, Zhao X. Extremely Low Activation Energies of Anti-perovskite Na3OX Solid Electrolytes. J Biomed Res Environ Sci. 2024 Sept 30
Subject area(s)
References
- Kubota K, Komaba A. Review-Practical Issues and Future Perspective for Na-Ion Batteries. J Electrochem Soc. 2015;162:A2538-A2550. doi: 10.1149/2.0151514jes.
- Palomares V, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5:5884-5901. doi: 10.1039/C2EE02781J.
- Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017 Jun 19;46(12):3529-3614. doi: 10.1039/c6cs00776g. PMID: 28349134.
- Slater MS, Kim D, Lee E, Johnson CS. Sodium-Ion Batteries. Adv Funct Mater. 2013;23:947-958. doi: 10.1002/adfm.201200691.
- Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014 Dec 10;114(23):11636-82. doi: 10.1021/cr500192f. Epub 2014 Nov 12. PMID: 25390643.
- Wang Y, et al. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites. J Power Sources. 2015;293:735. doi: 10.1016/j.jpowsour.2015.06.002.
- Sun Y, Wang Y, Liang X, Xia Y, Peng L, Jia H, Li H, Bai L, Feng J, Jiang H, Xie J. Rotational Cluster Anion Enabling Superionic Conductivity in Sodium-Rich Antiperovskite Na3OBH4. J Am Chem Soc. 2019 Apr 10;141(14):5640-5644. doi: 10.1021/jacs.9b01746. Epub 2019 Mar 29. PMID: 30912936.
- Gao S, Broux T, Fujii S, Tassel C, Yamamoto K, Xiao Y, Oikawa I, Takamura H, Ubukata H, Watanabe Y, Fujii K, Yashima M, Kuwabara A, Uchimoto Y, Kageyama H. Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors. Nat Commun. 2021 Jan 8;12(1):201. doi: 10.1038/s41467-020-20370-2. PMID: 33420012; PMCID: PMC7794446.
- James AD, Hungru Chen, Saiful Islam M. Composition Screening of Lithium and Sodium- Rich Anti-Perovskites for Fast-Conducting Solid Electrolytes. J Phys Chem C. 2018;122:23978-23984. doi: 10.1021/acs.jpcc.8b08208
- Wei Shi, Masataka Ohta, Hiroaki Asakawa, Yuki Osaki, Mariko Murayama, Xinwei Zhao. Synthesis and Conductivity Characterization of Anti-Perovskite Na3OX Solid Electrolytes for All Solid Na-Ion Batteries. Optics and Photonics Journal. 2023;13:189-198. doi: 10.4236/opj.2023.137017.
- Dawson JA, Famprikis T, Johnston KE. Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. J Mater Chem A. 2021;9:18746-18772. doi: 10.1039/D1TA03680G.
- Takashi Ida. Chemical analysis using powder X-ray diffraction method (nitech.ac.jp) (Japanese).
- Izumi Nakai, Fujio Izumi. Practical Powder X-ray Structural Analysis Introduction to Rietveld Method (Japanese).
- Altomare A, et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Cryst. 2013;46:1231-1235. doi: 10.1107/S0021889813013113.
- Kobayashi K, Suzuki TS. Free analysis and visualization programs for electrochemical impedance spectroscopy coded in Python. Electrochem. 2021. doi: 10.5796/electrochemistry.21-00010.
- Ernest Ahiavi, James A Dawson, Ulas Kudu, Matthieu Courty, Saiful Islam M, et al. Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes. J Power Sources. Elsevier. 2020;471:228489. doi: 10.1016/j.jpowsour.2020.228489.
- Kwangnam Kim, Donald J Siegel. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. J Mater Chem A. 2019;7:3216. doi: 10.1039/C8TA10989C.
- Yasutoshi Saito, Toshio Maruyama. JME Materials Science High ionic conductivity in solids (Japanese).