Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Extremely Low Activation Energies of Anti-perovskite Na3OX Solid Electrolytes

General Science    Start Submission

Wei Shi*, Yuki Osaki, Mariko Murayama, Kenji Hashimoto and Xinwei Zhao*

Volume5-Issue9
Dates: Received: 2024-08-29 | Accepted: 2024-09-28 | Published: 2024-09-30
Pages: 1229-1237

Abstract

Solid Electrolytes (SE) for all solid Sodium-Ion Batteries (SIB) have been attracting much attention as an alternative energy storage system, which have the advantage of being extremely safe because it can be charged quickly and is nonflammable. We have synthesized anti-perovskite type Na3OX (X = Br, and I) electrolytes with high purity. It was confirmed that a large crystal strain was introduced by eutecticization, which reduced the activation energy of Na ion conduction and lead to an improvement of the electric conductivity. In our previous work, an ionic conductivity of σ = 1.55x10-7 S/cm for Na3OBr0.6I0.4, and the activation energy was also reduced from 1.14eV to 0.64eV. These values, however, are still poor for a practical application as SE. In this paper, we focused on the Na3OBr1-xIx (x = 0 to 0.4) series and increased the synthesizing time from 3x6 to 3 x 9 hours. An extremely low activation energy of 0.25eV and high ionic conductivity of σ = 2.6x10-3 S/cm at 90oC and have been observed.

FullText HTML FullText PDF DOI: 10.37871/jbres2010


Certificate of Publication




Copyright

© 2024 Shi W, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Shi W, Osaki Y, Murayama M, Hashimoto K, Zhao X. Extremely Low Activation Energies of Anti-perovskite Na3OX Solid Electrolytes. J Biomed Res Environ Sci. 2024 Sept 30


Subject area(s)

References


  1. Kubota K, Komaba A. Review-Practical Issues and Future Perspective for Na-Ion Batteries. J Electrochem Soc. 2015;162:A2538-A2550. doi: 10.1149/2.0151514jes.
  2. Palomares V, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5:5884-5901. doi: 10.1039/C2EE02781J.
  3. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017 Jun 19;46(12):3529-3614. doi: 10.1039/c6cs00776g. PMID: 28349134.
  4. Slater MS, Kim D, Lee E, Johnson CS. Sodium-Ion Batteries. Adv Funct Mater. 2013;23:947-958. doi: 10.1002/adfm.201200691.
  5. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014 Dec 10;114(23):11636-82. doi: 10.1021/cr500192f. Epub 2014 Nov 12. PMID: 25390643.
  6. Wang Y, et al. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites. J Power Sources. 2015;293:735. doi: 10.1016/j.jpowsour.2015.06.002.
  7. Sun Y, Wang Y, Liang X, Xia Y, Peng L, Jia H, Li H, Bai L, Feng J, Jiang H, Xie J. Rotational Cluster Anion Enabling Superionic Conductivity in Sodium-Rich Antiperovskite Na3OBH4. J Am Chem Soc. 2019 Apr 10;141(14):5640-5644. doi: 10.1021/jacs.9b01746. Epub 2019 Mar 29. PMID: 30912936.
  8. Gao S, Broux T, Fujii S, Tassel C, Yamamoto K, Xiao Y, Oikawa I, Takamura H, Ubukata H, Watanabe Y, Fujii K, Yashima M, Kuwabara A, Uchimoto Y, Kageyama H. Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors. Nat Commun. 2021 Jan 8;12(1):201. doi: 10.1038/s41467-020-20370-2. PMID: 33420012; PMCID: PMC7794446.
  9. James AD, Hungru Chen, Saiful Islam M. Composition Screening of Lithium and Sodium- Rich Anti-Perovskites for Fast-Conducting Solid Electrolytes. J Phys Chem C. 2018;122:23978-23984. doi: 10.1021/acs.jpcc.8b08208
  10. Wei Shi, Masataka Ohta, Hiroaki Asakawa, Yuki Osaki, Mariko Murayama, Xinwei Zhao. Synthesis and Conductivity Characterization of Anti-Perovskite Na3OX Solid Electrolytes for All Solid Na-Ion Batteries. Optics and Photonics Journal. 2023;13:189-198. doi: 10.4236/opj.2023.137017.
  11. Dawson JA, Famprikis T, Johnston KE. Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. J Mater Chem A. 2021;9:18746-18772. doi: 10.1039/D1TA03680G.
  12. Takashi Ida. Chemical analysis using powder X-ray diffraction method (nitech.ac.jp) (Japanese).
  13. Izumi Nakai, Fujio Izumi. Practical Powder X-ray Structural Analysis Introduction to Rietveld Method (Japanese).
  14. Altomare A, et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Cryst. 2013;46:1231-1235. doi: 10.1107/S0021889813013113.
  15. Kobayashi K, Suzuki TS. Free analysis and visualization programs for electrochemical impedance spectroscopy coded in Python. Electrochem. 2021. doi: 10.5796/electrochemistry.21-00010.
  16. Ernest Ahiavi, James A Dawson, Ulas Kudu, Matthieu Courty, Saiful Islam M, et al. Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes. J Power Sources. Elsevier. 2020;471:228489. doi: 10.1016/j.jpowsour.2020.228489.
  17. Kwangnam Kim, Donald J Siegel. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. J Mater Chem A. 2019;7:3216. doi: 10.1039/C8TA10989C.
  18. Yasutoshi Saito, Toshio Maruyama. JME Materials Science High ionic conductivity in solids (Japanese).


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search