Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Periodontal Disease Shortens the Telomere Length in Human Gingival Crevicular Epithelium Cells and Human Umbilical Endothelial Cells

Medicine Group    Start Submission

Kazuo Sonoki*, Kosuke Muraoka, Masaki Morishita, Shuji Awano and Keisuke Nakashima

Volume5-Issue9
Dates: Received: 2024-09-13 | Accepted: 2024-09-18 | Published: 2024-09-20
Pages: 1168-1175

Abstract

Background: Telomere length, a biomarker of cellular aging, is decreased by inflammation. It is uncertain whether chronic inflammation, such as periodontal disease (PD), shortens telomere lengths. We compared the telomere lengths of gingival crevicular epithelium cells from both the healthy side and the diseased side of patients with PD and investigated whether lipopolysaccharide derived from a periodontal bacterium, Porphyromonas gingivalis (Pg-LPS) shortened the telomere lengths of human umbilical endothelial cells (HUVECs).

Methods: We extracted genomic DNA from gingival crevicular epithelium cells on the diseased and healthy sides collected from 25 patients with PD (mean age 72.4 years, 17 females. 8 males) and measured the telomere lengths by the polymerase chain reaction (PCR) method. After stimulating HUVECs with Pg-LPS at concentrations of 0.05, 0.1, and 1.0 µg/mL, we extracted genomic DNA and measured the telomere lengths.

Results: The telomere lengths on the patients' diseased sides were significantly shorter than those on the healthy sides (392.6 ± 232.8 kb vs. 599.5 ± 467.0 kb, p = 0.004). In the HUVECs, a concentration-dependent but nonsignificant decrease in telomere length was observed in response to Pg-LPS. Expressed as a ratio relative to the telomere lengths of unstimulated HUVECs, the ratio of telomere lengths decreased in a concentration-dependent manner, and the Pg-LPS concentration 1.0 µg/mL significantly decreased the ratio compared to the telomere lengths of unstimulated HUVECs.

Conclusions: Gingival crevicular epithelial cells of individuals with PD are believed to undergo aging due to telomere shortening. The involvement of one of the factors of periodontal virulence, LPS, is suspected as the mechanism.

FullText HTML FullText PDF DOI: 10.37871/jbres2005


Certificate of Publication




Copyright

© 2024 Sonoki K, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Sonoki K, Muraoka K, Morishita M, Awano S, Nakashima K. Periodontal Disease Shortens the Telomere Length in Human Gingival Crevicular Epithelium Cells and Human Umbilical Endothelial Cells. J Biomed Res Environ Sci. 2024 Sept 20; 5(9): 1168-1175. doi: 10.37871/jbres2005, Article ID: JBRES2005, Available at: https://www.jelsciences.com/articles/jbres2005.pdf


Subject area(s)

References


  1. Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, Lai MK, Kappei D, Kumar AP, Sethi G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev. 2016 Jan;25:55-69. doi: 10.1016/j.arr.2015.11.006. Epub 2015 Nov 23. PMID: 26616852.
  2. Steffens JP, Masi S, D'Aiuto F, Spolidorio LC. Telomere length and its relationship with chronic diseases – New perspectives for periodontal research. Arch Oral Biol. 2013 Feb;58(2):111-7. doi: 10.1016/j.archoralbio.2012.09.009. Epub 2012 Nov 30. PMID: 23201158.
  3. Sanders AE, Divaris K, Naorungroj S, Heiss G, Risques RA. Telomere length attrition and chronic periodontitis: An ARIC Study nested case-control study. J Clin Periodontol. 2015 Jan;42(1):12-20. doi: 10.1111/jcpe.12337. Epub 2014 Dec 26. PMID: 25418689.
  4. Masi S, Salpea KD, Li K, Parkar M, Nibali L, Donos N, Patel K, Taddei S, Deanfield JE, D'Aiuto F, Humphries SE. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. Free Radic Biol Med. 2011 Mar 15;50(6):730-5. doi: 10.1016/j.freeradbiomed.2010.12.031. Epub 2010 Dec 30. PMID: 21195167.
  5. Song W, Yang J, Niu Z. Association of periodontitis with leukocyte telomere length in US adults: A cross-sectional analysis of NHANES 1999 to 2002. J Periodontol. 2021 Jun;92(6):833-843. doi: 10.1002/JPER.20-0269. Epub 2020 Oct 27. PMID: 32996594.
  6. Thomson WM, Zeng J, Broadbent JM, Foster Page LA, Shalev I, Moffitt TE, Caspi A, Williams SM, Braithwaite AW, Robertson SP, Poulton R. Telomere length and periodontal attachment loss: A prospective cohort study. J Clin Periodontol. 2016 Feb;43(2):121-7. doi: 10.1111/jcpe.12499. Epub 2016 Feb 19. PMID: 26713854.
  7. Takahashi K, Nishida H, Takeda H, Shin K. Telomere length in leukocytes and cultured gingival fibroblasts from patients with aggressive periodontitis. J Periodontol. 2004 Jan;75(1):84-90. doi: 10.1902/jop.2004.75.1.84. PMID: 15025219.
  8. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol. 1992 Jun 20;225(4):951-60. doi: 10.1016/0022-2836(92)90096-3. PMID: 1613801.
  9. Kim CO, Huh AJ, Han SH, Kim JM. Analysis of cellular senescence induced by lipopolysaccharide in pulmonary alveolar epithelial cells. Arch Gerontol Geriatr. 2012 Mar-Apr;54(2):e35-41. doi: 10.1016/j.archger.2011.07.016. Epub 2011 Aug 25. PMID: 21871670.
  10. Zhao M, Chen X. Effect of lipopolysaccharides on adipogenic potential and premature senescence of adipocyte progenitors. Am J Physiol Endocrinol Metab. 2015 Aug 15;309(4):E334-44. doi: 10.1152/ajpendo.00601.2014. Epub 2015 Jun 23. PMID: 26105007.
  11. Sonoki K, Muraoka K, Hikiji H. Enhancement of porphyromonas gingivalis-lipopolysaccharide induced MCP-1 expression by high glucose in human endothelial cells. Journal of Dental and Oral Biology. 2020;1:6. doi: 10.47496/nl.JDOB.2020.01.01.
  12. Katarkar A, Saha A, Mukherjee S, Kundu D, Bandyopadhyay P, Chaudhuri K. Telomerase expression in individuals with chronic and aggressive periodontitis. J Periodontol. 2015 May;86(5):656-65. doi: 10.1902/jop.2015.140540. Epub 2015 Feb 9. PMID: 25660499.
  13. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet. 2001 Aug 11;358(9280):472-3. doi: 10.1016/S0140-6736(01)05633-1. PMID: 11513915.
  14. Cheng F, Luk AO, Shi M, Huang C, Jiang G, Yang A, Wu H, Lim CKP, Tam CHT, Fan B, Lau ESH, Ng ACW, Wong KK, Carroll L, Lee HM, Kong AP, Keech AC, Chow E, Joglekar MV, Tsui SKW, So WY, So HC, Hardikar AA, Jenkins AJ, Chan JCN, Ma RCW. Shortened leukocyte telomere length is associated with glycemic progression in type 2 diabetes: A prospective and mendelian randomization analysis. Diabetes Care. 2022 Mar 1;45(3):701-709. doi: 10.2337/dc21-1609. PMID: 35085380
  15. Honig LS, Kang MS, Schupf N, Lee JH, Mayeux R. Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol. 2012 Oct;69(10):1332-9. doi: 10.1001/archneurol.2012.1541. PMID: 22825311.
  16. Samavat H, Luu HN, Beckman KB et al. Leukocyte telomere length, cancer incidence and all-cause mortality among Chinese adults: Singapore Chinese Health Study. Int J Cancer. 2021 Jan 15;148(2):352-362. doi: 10.1002/ijc.33211. Epub 2020 Aug 5. PMID: 33459354.
  17. Nelson G, Kucheryavenko O, Wordsworth J, von Zglinicki T. The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech Ageing Dev. 2018 Mar;170:30-36. doi: 10.1016/j.mad.2017.08.005. Epub 2017 Aug 25.PMID: 28837845.
  18. Hajishengallis G. Aging and its impact on innate immunity and inflammation: Implications for periodontitis. J Oral Biosci. 2014 Feb 1;56(1):30-37. doi: 10.1016/j.job.2013.09.001. PMID: 24707191.
  19. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014 Jun 24;2:4172. doi: 10.1038/ncomms5172. PMID: 24960204.
  20. Wang JC, Bennett M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012 Jul 6;111(2):245-59. doi: 10.1161/CIRCRESAHA.111.261388. PMID: 22773427.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search