Jun Liu and Jian Lu*
Volume5-Issue9
Dates: Received: 2024-09-11 | Accepted: 2024-09-18 | Published: 2024-09-20
Pages: 1140-1151
Abstract
Beer is one of the most popular beverages in the world. However, beer contains excessive amounts of purines, which can increase the risk of hyperuricaemia and gout. During beer fermentation, a key reason is that the purines are not completely absorbed by yeast, which is due to the insufficient ability of purine salvage pathway in beer yeast. In order to improve the absorption capacity of yeast for purines, this study overexpressed four key genes in the purine metabolism pathway (HPT1, APT1, FCY2, and PRM15) in the commercial beer yeast strain SC4, and obtained three yeast engineering strains, namely M1 (SC4 HPT1:: APT1), M2 (M1:: FCY2), and M3 (M2:: PRM15). The expression of purine metabolism-related genes was examined at the transcriptional level, and the expression levels of HPT1, APT1, FCY2 and PRM15 genes were increased by 3.50-fold, 2.37-fold, 2.07-fold and 4.37-fold, respectively, and the overexpression of FCY2 and PRM15 increased the expression levels of HPT1 and APT1 by 3.50-fold and 2.37-fold, respectively. The expression of FCY2 and PRM15 made HPT1 and APT1 more active, indicating that the ability to absorb purines was further enhanced. Applying engineering yeast M3 to 12-degree wort fermentation, the results shown that the free purine base content is reduced by 53.35%, which provides a theoretical basis for reducing the purine content in beer.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2002
Certificate of Publication

Copyright
© 2024 Liu J, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Liu J, Lu J. Metabolic Engineering of the purine metabolic pathway in brewers yeast to reduce the Purine components in a Beer System. J Biomed Res Environ Sci. 2024 Sept 20; 5(9): 1140-1151. doi: 10.37871/jbres2002, Article ID: JBRES2002, Available at: https://www.jelsciences.com/articles/jbres2002.pdf
Subject area(s)
References
- Rodhouse L, Carbonero F. Overview of craft brewing specificities and potentially associated microbiota. Crit Rev Food Sci Nutr. 2019;59(3):462-473. doi: 10.1080/10408398.2017.1378616. Epub 2017 Oct 4. PMID: 28910550.
- Petruzzi L, Corbo M R, Sinigaglia M, Bevilacqua A. Brewer's yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. Food Reviews International. 2016;32(4):341-363. doi: 10.1080/87559129.2015.1075211.
- Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective - A review. J Adv Res. 2017 Sep;8(5):495-511. doi: 10.1016/j.jare.2017.04.008. Epub 2017 May 10. PMID: 28748116; PMCID: PMC5512152.
- Lee W J, Prentice N. Utilization of nucleosides and nucleobases by the lager yeast, Saccharomyces Carlsbergensis. Journal of the American Society of Brewing Chemists. 1987;45(4):128-131. doi: 10.1094/asbcj-45-0128.
- Akada R. Genetically modified industrial yeast ready for application. J Biosci Bioeng. 2002;94(6):536-44. doi: 10.1016/s1389-1723(02)80192-x. PMID: 16233347..
- Fischer S, Procopio S, Becker T. Self-cloning brewing yeast: a new dimension in beverage production. European Food Research and Technology. 2013;237(6):851-863. doi: 10.1007/s00217-013-2092-9.
- Wu D, Li X, Lu J, Chen J, Zhang L, Xie G. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. FEMS Microbiol Lett. 2016 Jan;363(1):fnv214. doi: 10.1093/femsle/fnv214. Epub 2015 Nov 3. PMID: 26538578.
- Ogata T, Kobayashi M, Gibson BR. Pilot-scale brewing using self-cloning bottom-fermenting yeast with high SSU1 expression. Journal of the Institute of Brewing. 2013;119(1-2):17-22. doi: 10.1002/jib.61.
- Kusunoki K, Ogata T. Construction of self-cloning bottom-fermenting yeast with low vicinal diketone production by the homo-integration of ILV5. Yeast. 2012 Oct;29(10):435-42. doi: 10.1002/yea.2922. Epub 2012 Oct 5. PMID: 23038161.
- Wang Z Y, He X P, Liu N, Bo-Run Z. Construction of self-cloning industrial brewing yeast with high-glutathione and low-diacetyl production. International Journal of Food Science & Technology. 2008;43(6):989-994. doi: 10.1111/j.1365-2621.2007.01546.x.
- Wang ZY, Wang JJ, Liu XF, He XP, Zhang BR. Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1+CUP1 cassette. FEMS Yeast Res. 2009 Jun;9(4):574-81. doi: 10.1111/j.1567-1364.2009.00502.x. Epub 2009 Apr 1. PMID: 19341381.
- Woods RA, Roberts DG, Friedman T, Jolly D, Filpula D. Hypoxanthine: guanine phosphoribosyltransferase mutants in Saccharomyces cerevisiae. Mol Gen Genet. 1983;191(3):407-12. doi: 10.1007/BF00425755. PMID: 6355764.
- Alfonzo JD, Crother TR, Guetsova ML, Daignan-Fornier B, Taylor MW. APT1, but not APT2, codes for a functional adenine phosphoribosyltransferase in Saccharomyces cerevisiae. J Bacteriol. 1999 Jan;181(1):347-52. doi: 10.1128/JB.181.1.347-352.1999. PMID: 9864350; PMCID: PMC103569.
- Xu YF, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy AA, Yakunin AF, Broach JR, Rabinowitz JD. Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol. 2013 May 14;9:665. doi: 10.1038/msb.2013.21. PMID: 23670538; PMCID: PMC4039369.
- Wagner R, Straub ML, Souciet JL, Potier S, de Montigny J. New plasmid system to select for Saccharomyces cerevisiae purine-cytosine permease affinity mutants. J Bacteriol. 2001 Jul;183(14):4386-8. doi: 10.1128/JB.183.14.4386-4388.2001. PMID: 11418581; PMCID: PMC95330.
- Nelissen B, Mordant P, Jonniaux JL, De Wachter R, Goffeau A. Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett. 1995 Dec 18;377(2):232-6. doi: 10.1016/0014-5793(95)01380-6. PMID: 8543057.
- Li H, Liu F, Hao J. Determination of purines in beer by HPLC using a simple and rapid sample pretreatment. Journal of the American Society of Brewing Chemists. 2015;73(2):137-142. doi: 10.1094/ASBCJ-2015-0409-01.
- Cigić I, Vodošek T, Košmerl T, M. Strlič. Amino acid quantification in the presence of sugars using HPLC and pre-column derivatization with 3-MPA/OPA and FMOC-Cl. Acta Chimica Slovenica. 2008;55(3):660-664.
- Capece A, Romaniello R, Pietrafesa A, Siesto G, Pietrafesa R, Zambuto M, Romano P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int J Food Microbiol. 2018 Nov 2;284:22-30. doi: 10.1016/j.ijfoodmicro.2018.06.028. Epub 2018 Jul 2. PMID: 29990636.
- Jones M, Pierce J S. Absorption of amino acids from wort by yeasts. Journal of the Institute of Brewing. 1964;70(4):307-315. doi: 10.1002/j.2050-0416.1964.tb01996.x.
- Lei H, Zheng L, Wang C, Zhao H, Zhao M. Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast. Int J Food Microbiol. 2013 Feb 1;161(2):76-83. doi: 10.1016/j.ijfoodmicro.2012.11.024. Epub 2012 Dec 6. PMID: 23279816.
- Thomas KC, Ingledew WM. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Environ Microbiol. 1990 Jul;56(7):2046-50. doi: 10.1128/aem.56.7.2046-2050.1990. PMID: 2202254; PMCID: PMC184558.
- Verbelen PJ, Dekoninck TM, Van Mulders SE, Saerens SM, Delvaux F, Delvaux FR. Stability of high cell density brewery fermentations during serial repitching. Biotechnol Lett. 2009 Nov;31(11):1729-37. doi: 10.1007/s10529-009-0067-5. Epub 2009 Jun 30. PMID: 19565190.