Covid-19 Research

Short Communication

OCLC Number/Unique Identifier:

TRPM7-Mediated Ca2+ Influx in Metabolic Reprograming

Medicine Group    Start Submission

Pengyu Zong, Loren W Runnel* and Lixia Yue*

Volume5-Issue6
Dates: Received: 2024-05-19 | Accepted: 2024-06-08 | Published: 2024-06-11
Pages: 562-566

Abstract

Metabolic reprograming is a process in which cells alter their biosynthetic and bioenergetic pathways to meet the changing energetic demands. To ensure energy supply, cancer cells increase glucose uptake and adapt their glucose metabolism from oxidative phosphorylation to aerobic phosphorylation. Metabolic reprograming towards aerobic glycolysis is also required for angiogenesis, as angiogenesis happens in tissues that in need of more blood (oxygen) supply. Although aerobic glycolysis was originally identified by Warburg nearly century ago, the molecular mechanisms regulating aerobic glycolysis remain elusive. In this issue of Cell death & disease (14, 183 (2023)), Wu and colleagues identified that by regulating calcineurin-CRTC2-CREB signaling pathway, TRPM7-mediated Ca2+ influx promotes the expression of glucose transporter 3 (GLUT3), which is needed for the programming of energy metabolism from oxidative phosphorylation toward aerobic glycolysis during tumorigenesis and angiogenesis. This study highlights the critical role of TRPM7 in metabolic reprogramming, and suggests that TRPM7 can be a molecular target for the treatment of other metabolic reprograming-related diseases.

FullText HTML FullText PDF DOI: 10.37871/jbres1926


Certificate of Publication




Copyright

© 2024 Zong P, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Zong P, Runnel LW, Yue L. TRPM7-Mediated Ca2+ Infl ux in Metabolic Reprograming. J Biomed Res Environ Sci. 2024 Jun 11; 5(6): 562-566. doi: 10.37871/jbres1926, Article ID: JBRES1926, Available at: https://www.jelsciences.com/articles/ jbres1926.pdf


Subject area(s)

References


  1. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020 Apr 10;368(6487):eaaw5473. doi: 10.1126/science.aaw5473. PMID: 32273439; PMCID: PMC7227780.
  2. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004 Nov;4(11):891-9. doi: 10.1038/nrc1478. PMID: 15516961.
  3. Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015 Oct 6;34:111. doi: 10.1186/s13046-015-0221-y. PMID: 26445347; PMCID: PMC4595070.
  4. Potente M, Carmeliet P. The Link Between Angiogenesis and Endothelial Metabolism. Annu Rev Physiol. 2017 Feb 10;79:43-66. doi: 10.1146/annurev-physiol-021115-105134. Epub 2016 Dec 15. PMID: 27992732.
  5. Clapham DE. TRP channels as cellular sensors. Nature. 2003 Dec 4;426(6966):517-24. doi: 10.1038/nature02196. PMID: 14654832.
  6. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol. 2003 Jan;121(1):49-60. doi: 10.1085/jgp.20028740. PMID: 12508053; PMCID: PMC2217320.
  7. Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol. 2006 May;127(5):525-37. doi: 10.1085/jgp.200609502. PMID: 16636202; PMCID: PMC2151519.
  8. Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients. 2022 Jun 17;14(12):2526. doi: 10.3390/nu14122526. PMID: 35745255; PMCID: PMC9231024.
  9. Jiang J, Li M, Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol. 2005 Aug;126(2):137-50. doi: 10.1085/jgp.200409185. Epub 2005 Jul 11. PMID: 16009728; PMCID: PMC2266571.
  10. Yee NS. Role of TRPM7 in Cancer: Potential as Molecular Biomarker and Therapeutic Target. Pharmaceuticals (Basel). 2017 Apr 5;10(2):39. doi: 10.3390/ph10020039. PMID: 28379203; PMCID: PMC5490396.
  11. Wu W, Wang X, Liao L, Chen J, Wang Y, Yao M, Zhu L, Li J, Wang X, Chen AF, Zhang G, Zhang Z, Bai Y. The TRPM7 channel reprograms cellular glycolysis to drive tumorigenesis and angiogenesis. Cell Death Dis. 2023 Mar 6;14(3):183. doi: 10.1038/s41419-023-05701-7. PMID: 36878949; PMCID: PMC9988972.
  12. Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science. 2001 Feb 9;291(5506):1043-7. doi: 10.1126/science.1058519. Epub 2001 Jan 18. PMID: 11161216.
  13. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 2001 May 31;411(6837):590-5. doi: 10.1038/35079092. Erratum in: Nature 2001 Aug 9;412(6847):660. PMID: 11385574.
  14. Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 2014 May 22;157(5):1061-72. doi: 10.1016/j.cell.2014.03.046. PMID: 24855944; PMCID: PMC4156102.
  15. Visser D, Middelbeek J, van Leeuwen FN, Jalink K. Function and regulation of the channel-kinase TRPM7 in health and disease. European journal of cell biology. 2014;93:455-465. doi: 10.1016/j.ejcb.2014.07.001
  16. Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J, Clapham DE. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8201-E8210. doi: 10.1073/pnas.1810719115. Epub 2018 Aug 14. PMID: 30108148; PMCID: PMC6126765.
  17. Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater Au. 2023 Aug 21;3(6):600-619. doi: 10.1021/acsmaterialsau.3c00032. PMID: 38089666; PMCID: PMC10636777.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search