Covid-19 Research

Original Article

OCLC Number/Unique Identifier:

On the Sensitivity of the Potential Evapotranspiration of Egypt to Different Initial Conditions of the Soil Moisture Using a High-resolution Regional Climate Model

Environmental Sciences    Start Submission

Samy A Anwar*

Volume5-Issue5
Dates: Received: 2024-05-05 | Accepted: 2024-05-23 | Published: 2024-05-28
Pages: 501-514

Abstract

The present study investigated the sensitivity of the Potential Evapotranspiration (PET) of Egypt to different initial conditions of soil moisture using a high-resolution Regional Climate Model (RegCM4). To address this issue, two 32-year simulations were conducted from 1979 to 2010. The first two years were considered as spin-up. In the first simulation, the RegCM4 was initialized with the satellite product ESACCI (ESA) and the RegCM4 was initialized with version 3 of the Century Reanalysis Product (CEN) in the second simulation. The PET was computed using a calibrated version of the Hargreaves–Samani (HS) equation. In the two simulations, the RegCM4 was configured with the Community Land Model version 4.5 (CLM45). Era-Interim Reanalysis of 1.5 degrees (EIN15) was used to downscale the RegCM4 with 25 km grid spacing. The ERA5-based product (ERA5) was used as the observational dataset.

The results showed that switching between ESA and CEN didn’t induce a notable influence on the daily maximum air temperature. Regarding the daily minimum air temperature, the CEN outperforms the ESA concerning the Climate Research Unit (CRU). In comparison with the ERA5 product, the CEN was able to reduce the PET negative bias (0.8 to 1.8 mm day-1) better than the one noted in the ESA (0.8 to 3 mm day-1). On a point scale, the performance of the ESA/CEN varies with the location and month. Such a point was confirmed using different statistical metrics such as mean bias, Pearson correlation coefficient and standard deviation ratio. In conclusion, the CEN can be recommended to initialize the RegCM4 to ensure a reliable estimation of the PET of Egypt either in the present climate or under different future scenarios.

FullText HTML FullText PDF DOI: 10.37871/jbres1920


Certificate of Publication




Copyright

© 2024 Anwar SA. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Anwar SA. On the Sensitivity of the Potential Evapotranspiration of Egypt to Different Initial Conditions of the Soil Moisture Using a High-resolution Regional Climate Model. J Biomed Res Environ Sci. 2024 May 28; 5(5): 501-514. doi: 10.37871/ jbres1920, Article ID: JBRES1920, Available at: https://www.jelsciences.com/articles/jbres1920.pdf


Subject area(s)

References


  1. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ. Investigating soil moisture–climate interactions in a changing climate: A Review. Earth Science Reviews. 2010;99:125-161. doi: 10.1016/j.earscirev.2010.02.004.
  2. Anwar SA, Zakey AS, Robaa SM, Wahab MM. The influence of two land-surface hydrology schemes on the regional climate of Africa using the RegCM4 model. Theor Appl Climatol. 2019;136:1535. doi: 10.1007/s00704-018-2556-8.
  3. Seo E, Lee MI, Jeong JH, et al. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Clim Dyn. 2019;52:1695-1709. doi: 10.1007/s00382-018-4221-4
  4. Zhang H, Liu J, Li, H Meng, X, Ablikim A. The impacts of soil moisture initialization on the forecasts of weather research and forecasting model: A case study in xinjiang, China. Water. 2020;12:1892. doi: 10.3390/w12071892.
  5. Osuri KK, Nadimpalli R, Mohanty UC, Chen F, Rajeevan M, Niyogi D. Improved prediction of severe thunderstorms over the Indian Monsoon region using high-resolution soil moisture and temperature initialization. Sci Rep. 2017 Jan 27;7:41377. doi: 10.1038/srep41377. PMID: 28128293; PMCID: PMC5269717.
  6. Anwar SA, Mostafa SM. Assessment of the sensitivity of daily maximum and minimum air temperatures of Egypt to soil moisture status and land surface parameterization using RegCM4. Eng Proc. 2023;56:115. doi: 10.3390/ASEC2023-15353.
  7. Dorigo W, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, Chung D, Ertl M, Forkel M, Gruber A, Haas E, Hamer P, Hirschi M, Ikonen J, Jeu R de, Kidd R, Lahoz WA, Liu YY, Miralles D, Mistelbauer T, Nicolai-Shaw N, Parinussa R, Pratola C, Reimer C, Schalie R van der, Seneviratne SI, Smolander T, Lecomte P. ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017;203:185-215. doi: 10.1016/j.rse.2017.07.001.
  8. Gruber A, Scanlon T, van der Schalie R, Wagner W, Dorigo W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst Sci Data. 2019;11:717-739. doi: 10.5194/essd-11-717-2019.
  9. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey S, Steiner AL, Stordal F, Sloan LC, Branković C. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012;52:7-29. doi: 10.3354/cr01018.
  10. Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM Swenson SC, Thornton PE, Bozbiyik A, Rosie F, Heald C, Kluzek E, Lamarque JF, Lawrence PJ, Leung LR, Lipscomb WH, Muszala S, Ricciuto DM, Sacks WJ, Sun Y, Tang J, Yang ZL. Technical description of version 4.5 of the Community Land Model (CLM); NCAR technical note NCAR/TN-503þ STR; National Center for Atmospheric Research. 2013. doi: 10.5065/D6RR1W7M.
  11. Dickinson RE, Henderson-Sellers A, Kennedy PJ. Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the ncar community climate model (No. NCAR/TN-387þ STR). University Corporation for Atmospheric Research. 1993. doi: 10.5065/D67W6959.
  12. Harris I, Osborn TJ, Jones P, Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data. 2020;7(1):109. doi: 10.1038/s41597-020-0453-3.
  13. Anwar SA. Simulating daily soil temperature in Egypt using a high-resolution regional climate model: sensitivity to soil moisture and temperature initial conditions. Eng Proc. 2023;56:106. doi: 10.3390/ASEC2023-15368.
  14. Allen GR, Pereira SL, Raes D, Smith M. Crop evapotranspiration: Guidelines for computing crop water requirements; report 56; food and agricultural organization of the united nations (FAO): Rome. 1998.
  15. Brutsaert W, Parlange MB. Hydrologic cycle explains the evaporation paradox. Nature. 1998;396(6706):30-30. doi: 10.1038/23845.
  16. Spinoni J, Barbosa P, Bucchignani E, Cassano J, Cavazos T, Cescatti A, Christensen JH, Christensen OB, Coppola E, Evans JP, Forzieri G, Geyer B, Giorgi F, Jacob D, Katzfey J, Koenigk T, Laprise R, Lennard CJ, Kurnaz ML, Li D, Llopart M, McCormick N, Naumann G, Nikulin G, Ozturk T, Panitz HJ, da Rocha RP, Solman SA, Syktus J, Tangang F, Teichmann C, Vautard R, Vogt JV, Winger K, Zittis G, Dosio A. Global exposure of population and land-use to meteorological droughts under different warming levels and SSPs: A CORDEX-based study. Int J Climatol. 2021;41(15):6825-6853. doi: 10.1002/joc.7302.
  17. Hargreaves GH, Samni ZA. Estimation of potential evapotranspiration. J Irrig Drain Div Proc Am Soc Civ Eng. 1982;108:223-230.
  18. Hargreaves GH, Samani ZA. Reference crop evapotranspiration from temperature. Appl Eng Agr. 1985;1(2):96-99. doi: 10.13031/2013.26773.
  19. Priestley CHB, Taylor RJ. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev. 1972;100:81-92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.
  20. Rohwer C. Evaporation from free water surface. USDA Tech Null. 1931;217:1-96.
  21. Raziei T, Pereirab LS. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management. 2013;121:1-18. doi: 10.1016/j.agwat.2012.12.019.
  22. Rajabi A, Babakhani Z. The study of potential evapotranspiration in future periods due to climate change in west of Iran. Int J Clim Chang Strateg Manag. 2018;10:161-177. doi: 10.1108/IJCCSM-01-2017-0008.
  23. Elagib NA, Musa AA. Correcting Hargreaves–Samani formula using geographical coordinates and rainfall over different timescales. Hydrological Processes. 2022;37:14790. doi: 10.1002/hyp.14790.
  24. Giménez PO, García-Galiano SG. Assessing Regional Climate Models (RCMs) ensemble-driven reference evapotranspiration over Spain. Water. 2018;10(9):1181. doi: 10.3390/w10091181.
  25. Hargreaves GL, Allen RG. History and evaluation of Hargreaves evapotranspiration equation. J Irrigat Drain Eng. 2003;129:53-63. doi: 10.1061/(ASCE)0733-9437(2003)129:1(53).
  26. Slivinski LC, Compo GP, Whitaker JS, Sardeshmukh PD, Giese BS, McColl C, Allan R, Yin X, Vose R, Titchner H, Kennedy J, Spencer LJ, Ashcroft L, Brönnimann S, Brunet M , Camuffo D, Cornes R, Cram TA, Crouthamel R, Domínguez-Castro F, Freeman EJ, Gergis J, Hawkins Ed, Jones PD, Jourdain S, Kaplan A, Kubota H, Le Blancq F, Lee TC, Lorrey A, Luterbacher J, Maugeri M, Mock CJ, Kent Moore GW, Przybylak R, Pudmenzky C, Reason C, Slonosky VC, Smith CA, Tinz B, Trewin B, Valente MA, Wang XL, Wilkinson C, Wood K, Wyszyński P. Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system. Q J R Meteorol Soc. 2019;145:2876-2908. doi: 10.1002/qj.3598.
  27. Singer M, Asfaw D, Rosolem R, Cuthbert MO, Miralles DG, MacLeod D. Michaelides K. Hourly Potential Evapotranspiration (hPET) at 0.1degs grid resolution for the global land surface from 1981-present. Sci Data 2021;8:224. doi: 10.1038/s41597-021-01003-9.
  28. Anwar SA, Srivastava A. On the sensitivity of potential evapotranspiration in Egypt to different dynamical downscaling options and boundary layer schemes using a high-resolution regional climate model. Eng Proc. 2023;56:116. doi: 10.3390/ASEC2023-15357.
  29. Giorgi F. Thirty years of regional climate modeling. Where are we and where are we going? J Geophys Res. 2019;124:5696-5723. doi: 10.1029/2018JD030094.
  30. Giorgi F, Bates GT. The climatological skill of a regional model over complex terrain. Mon Wea Rev. 1989;117:2325-2347. doi: 10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2.
  31. Giorgi F, Marinucci MR, Bates GT. Development of a second generation Regional Climate Model (RegCM2). Part I: Boundary layer and radiative transfer processes. Mon Wea Rev.1993;121:2794-2813.
  32. Giorgi F, Marinucci MR, Bates GT, DeCanio G. Development of a second generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Wea Rev. 1993;121:2814-2832.
  33. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, Rocha RP, Sloan LC, Steiner AL. The ICTP RegCM3 and RegCNET: Regional climate modeling for the developing World. Bull Amer Meteor Soc. 2007;88:1395-1409. doi: 10.1175/BAMS-88-9-1395.
  34. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O'Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim Res. 2021;52:7-29.
  35. Coppola E, Stocchi P, Pichelli E, Torres Alavez JA, Glazer R, Giuliani G, Di Sante F, Nogherotto R, Giorgi F. Non-Hydrostatic RegCM4 (RegCM4-NH): Model description and case studies over multiple domains. Geoscientific Model Development. 2021;14(12):7705-7723. doi: 10.5194/gmd-14-7705-2021.
  36. Giorgi F, Coppola E, Giuliani G, Ciarlo JM, Pichelli E, Nogherotto R, Raffaele F, Malguzzi P, Davolio S, Stocchi P, Drofa O. The Fifth Generation Regional Climate Modeling System, RegCM5: Description and Illustrative Examples at Parameterized Convection and Convection-Permitting Resolutions. J Geophys Res Atmos. 2023. doi: 10.1029/2022JD038199.
  37. Kiehl JT, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P. Description of the ncar community climate model (ccm3), National Center for Atmospheric Research Technical Note NCAR/TN-420+STR. 1996;95.
  38. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res. 1997;102(16):663-16,682.
  39. Holtslag AAM, Boville BA. Local versus nonlocal boundary layer diffusion in a global model. J Clim. 1993;6:1825-1842. doi: 10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.
  40. Grenier H, Bretherton CS. A moist PBL parameterization for large scale models and its application to subtropical cloud topped marine boundary layers. Mon Weather Rev. 2001;129:357-377. doi: 10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.
  41. Emanuel KA, Zivkovic-Rothman M. Development and evaluation of a convection scheme for use in climate models. J Atmos Sci. 1999;56:1766-1782. doi: 10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.
  42. Anwar SA, Lazić I. Estimating the potential evapotranspiration of Egypt using a regional climate model and a high-resolution reanalysis dataset. Environ Sci Proc. 2023;25:29. doi: 10.3390/ECWS-7-14253.
  43. Anwar SA, Malcheva K, Srivastava A. Estimating the potential evapotranspiration of Bulgaria using a high‑resolution regional climate model. Theor Appl Climatol. 2023;152:1175-1188. doi: 10.1007/s00704-023-04438-9.
  44. Anwar SA, Mamadou O, Diallo I, Sylla MB. On the influence of vegetation cover changes and vegetation-runoff systems on the simulated summer potential evapotranspiration of tropical Africa using RegCM4. Earth Syst Environ. 2021;5:883-897. doi: 10.1007/s41748-021-00252-3.
  45. Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Muñoz- Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemmin, J Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Holm E, Janiskova M, Keeley S, Laloyaux, P, Lopez P, Lupu C, Radnoti, G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN. The ERA5 global reanalysis. QJR Meteorol Soc. 2020;146:1999-2049. doi: 10.1002/qj.3803.
  46. Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F. Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn. 2009;33(6):869-892. doi: 10.1007/s00382-009-0543-6.
  47. Singer MB, Asfaw DT, Rosolem R, Cuthbert MO, Miralles DG, MacLeod D, Quichimbo EA, Michaelides K. Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Sci Data. 2021 Aug 24;8(1):224. doi: 10.1038/s41597-021-01003-9. PMID: 34429438; PMCID: PMC8385079.
  48. Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles DG, Piles M, Rodríguez-Fernández, N J, Zsoter E, Buontempo C, Thépaut JN. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data. 2021;13:4349-4383. doi: 10.5194/essd-13-4349-2021.
  49. Chen H, Zhu G, Zhang K, Bi J, Jia X, Ding B, Zhang Y, Shang S, Zhao N, Qin W. Evaluation of evapotranspiration models using different lai and meteorological forcing data from 1982 to 2017. Remote Sensing. 2020;12(15):2473. doi: 10.3390/rs12152473.
  50. Martens B, Miralles DG, Lievens H, van der Schalie R, de Jeu RAM, Fernández-Prieto D, Beck HE, Dorigo WA, Verhoest NEC. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017;10:1903-1925. doi: 10.5194/gmd-10-1903-2017.
  51. Anwar SA, Srivastava A. On the sensitivity of potential evapotranspiration in Egypt to different dynamical downscaling options and boundary layer schemes using a high-resolution regional climate model. Eng Proc. 2023;56:116. doi: 10.3390/ASEC2023-15357.
  52. Perez J, Menendez M, Mendez FJ, Losada IJ. Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Clim Dyn. 2014;43:2663-2680. doi: 10.1007/s00382-014-2078-8.
  53. Hamed MM, Nashwan MS, Shahid S. Inter-comparison of historical simulation and future projection of rainfall and temperature by cmip5 and cmip6 GCMS over Egypt. Int J Climatol. 2022a;42:4316-4332. doi: 10.1002/joc.7468.
  54. Hamed MM, Nashwan MS, Shiru MS, Shahid S. Comparison between CMIP5 and CMIP6 models over mena region using historical simulations and future projections. Sustainability. 2022b;14:10375. doi: 10.3390/su141610375.
  55. Mostafa, SM, Anwar SA, Zakey AS, Wahab MMA. Bias-correcting the maximum and minimum air temperatures of Egypt using a high-resolution regional climate model (RegCM4). Eng Proc. 2023;31:73. doi: 10.3390/ASEC2022-13852.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search