Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

Traditional and Novel Foods as Vectors for Human Parasitic Diseases

Biology Group    Start Submission

Divyashri G*, Harini H, Likitha V, Lalitha Prasanna MV, Mahima ED and Shreya M

Volume5-Issue5
Dates: Received: 2024-05-11 | Accepted: 2024-05-23 | Published: 2024-05-28
Pages: 474-487

Abstract

Consumption of food contaminated with parasites pose a significant threat to public health particularly in underprivileged communities with inadequate access to sanitation and food safety practices. Unlike bacterial and viral infections, parasitic infections often develop slowly and are reported cause chronic health issues. However, due to extended incubation time, it is difficult to determine the source of the infection. The type and number of parasites in food, the temperature at which food is prepared and stored, as well as a person's immune system, all of these contribute significantly to the onset of parasitic infection. This mini-review focuses on common parasitic infections, their emergence with traditional and novel foods, transmission mechanisms, epidemiological trends, and effective prevention and control measures. Understanding these aspects is crucial for developing strategies to reduce the impact of foodborne parasitic infections on public health, particularly in vulnerable populations.

FullText HTML FullText PDF DOI: 10.37871/jbres1917


Certificate of Publication




Copyright

© 2024 Divyashri G. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Divyashri G, Harini H, Likitha V, Lalitha Prasanna MV, Mahima ED, Shreya M. Traditional and Novel Foods as Vectors for Human Parasitic Diseases. J Biomed Res Environ Sci. 2024 May 28; 5(5): 474-487. doi: 10.37871/jbres1917, Article ID: JBRES1917, Available at: https://www.jelsciences.com/articles/jbres1917.pdf


Subject area(s)

References


  1. Surya R, Lee AGY. Exploring the philosophical values of kimchi and kimjang culture. Journal of Ethnic Foods. 2022;9(1). doi: 10.1186/s42779-022-00136-5.
  2. Mohamed A, Oumer N, Abdi D, Musa A, Adem M. A review on ruminant’s meat-born helminth zoonoses. Annals of Infectious Diseases & Preventive Medicine. 2024;4(1):1009.
  3. Awuchi CG. HACCP, quality, and food safety management in food and agricultural systems. Cogent Food & Agriculture. 2023;9(1). doi: 10.1080/23311932.2023.2176280.
  4. Robertson LJ. Parasites in Food: From a neglected position to an emerging issue. In: Advances in Food and Nutrition Research.2018:71-113. doi:10.1016/bs.afnr.2018.04.003. PMID: 30077225; PMCID: PMC7129657.
  5. Sander VA, López EFS, Morales LFM, Duarte VAR, Corigliano MG, Clemente M. Use of veterinary vaccines for livestock as a strategy to control foodborne parasitic diseases. Frontiers in Cellular and Infection Microbiology. 2020;10. doi:10.3389/fcimb.2020.00288. PMID: 32670892; PMCID: PMC7332557.
  6. Garcia LS, Arrowood M, Kokoskin E, et al. Practical Guidance for Clinical Microbiology Laboratories: Laboratory Diagnosis of Parasites from the Gastrointestinal Tract. Clinical Microbiology Reviews. 2018;31(1). doi:10.1128/cmr.00025-17. PMID: 29142079; PMCID: PMC5740970.
  7. Salim NM, Masroor NMS, Parween NS. An overview on trematodes developing disease complications causing cancer in human. World Journal of Advanced Research and Reviews. 2021;12(1):362-374. doi: 10.30574/wjarr.2021.12.1.0535.
  8. Paladini G, Longshaw M, Gustinelli A, Shinn AP. Parasitic diseases in aquaculture: Their biology, diagnosis and control. Diagnosis and Control of Diseases of Fish and Shellfish. 2017;37-107. doi: 10.1002/9781119152125.ch4.
  9. Chhabra MB, Pathak KML, Muraleedharan K. Food-borne parasitic zoonoses: Status, emerging risk factors and issues: An overview. J. Foodborne Zoonotic Dis. 2017;5(2):16-31.
  10. Abuseir S. Meat-borne parasites in the Arab world: a review in a One Health perspective. Parasitol Res. 2021;120(12):4153-4166. doi:10.1007/s00436-021-07149-0. Epub 2021 Apr 15. PMID: 33856533.
  11. Symeonidou I. Human taeniasis/cysticercosis: a potentially emerging parasitic disease in Europe. Annals of Gastroenterology. Published online January 1, 2018. doi:10.20524/aog.2018.0260. PMID: 29991885; PMCID: PMC6033766.
  12. Uslu U, Şenlik B. Meatborne parasitic zoonosis. In: Veterinary Pathobiology and Public Health. 2019;96-113. doi: 10.47278/book.vpph/2021.001.
  13. Diaz JH, Warren RJ, Oster MJ. The disease ecology, epidemiology, clinical manifestations, and management of trichinellosis linked to consumption of wild animal meat. Wilderness & Environmental Medicine. 2020;31(2):235-244. doi:10.1016/j.wem.2019.12.003. PMID: 32169338.
  14. Dupouy-Camet J, Raffetin A, Rosca EC, Yera H. Clinical picture and diagnosis of human trichinellosis. In: Elsevier eBooks. 2021;333-352. doi: 10.1016/b978-0-12-821209-7.00010-x.
  15. Gay M, Verrez‐bagnis V. Fish parasites and associated risks. Current Challenges for the Aquatic Products Processing Industry. 2023;147-186. doi: 10.1002/9781394264728.ch6.
  16. John HC. Fish- and Invertebrate-Borne helminths. Taylor & Francis. 2018. doi: 10.1201/9781351072106-12.
  17. Furuya K, Nakajima H, Sasaki Y, Urita Y. Anisakiasis: The risks of seafood consumption. Nigerian Journal of Clinical Practice. 2018;21(11):1492. doi:10.4103/njcp.njcp_256_17. PMID: 30417849.
  18. Ikuno H, Akao S, Yamasaki H. Epidemiology of Diphyllobothrium Nihonkaiense Diphyllobothriasis, Japan, 2001–2016. Emerging Infectious Diseases. 2018;24(8). doi:10.3201/eid2408.171454; PMID: 30016246; PMCID: PMC6056094.
  19. Sharma K, Wijarnpreecha K, Merrell N. Diphyllobothrium latum Mimicking Subacute Appendicitis. Gastroenterology Research. 2018;11(3):235-237. doi:10.14740/gr989w. PMID: 29915635; PMCID: PMC5997473.
  20. Santos CAMLD. The possible use of HACCP in the prevention, and control of food-borne treinatode infections in aquacultured fish. In: CRC Press eBooks. 2020;53-64. doi: 10.1201/9781003075899-8.
  21. Murrell KD, Pozio E. The liver flukes: Clonorchis sinensis, Opisthorchis spp, and Metorchis spp. In: Michigan State University eBooks. 2019. doi: 10.14321/waterpathogens.44.
  22. Zhang Y, Gong Q, Lv Q, et al. Prevalence of Clonorchis sinensis infection in fish in South‐East Asia: A systematic review and meta‐analysis. Journal of Fish Diseases. 2020;43(11):1409-1418. doi:10.1111/jfd.13245. PMID: 32880984.
  23. Pakharukova MY, Mordvinov VA. Similarities and differences among the Opisthorchiidae liver flukes: insights from Opisthorchis felineus. Parasitology. 2022;149(10):1306-1318. doi:10.1017/s0031182022000397;PMID: 35570685; PMCID: PMC11010525.
  24. Chai J-Y, Jung B-K. General overview of the current status of human foodborne trematodiasis. Parasitology. 2022;149(10):1262-1285. doi:10.1017/S0031182022000725. PMID: 35591777; PMCID: PMC10090779.
  25. Yoshida A, Doanh PN, Maruyama H. Paragonimus and paragonimiasis in Asia: An update. Acta Tropica. 2019;199:105074. doi:10.1016/j.actatropica.2019.105074. PMID: 31295431.
  26. Silachamroon U, Wattanagoon Y. Paragonimiasis. In: Elsevier eBooks. 2020;928-931. doi: 10.1016/b978-0-323-55512-8.00129-0.
  27. Hikal W, Ahl HAHSA. Food related parasitic infection: A review. American Journal of Food Science and Health. 2017;3(2):30-34.
  28. Lalor R, Cwiklinski K, Calvani NED, et al. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence. 2021;12(1):2839-2867. doi:10.1080/21505594.2021.1996520. PMID: 34696693; PMCID: PMC8632118.
  29. Mas-Coma S, Bargues MD, Valero MA. Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures – CORRIGENDUM. Parasitology. 2020;147(5):601. doi:10.1017/s0031182020000256. PMID: 32052720; PMCID: PMC7174693.
  30. Hadjilouka A, Tsaltas D. Cyclospora Cayetanensis—Major Outbreaks from Ready to Eat Fresh Fruits and Vegetables. Foods. 2020;9(11):1703. doi:10.3390/foods9111703; PMID: 33233660;PMCID: PMC769973.
  31. Gizaw Z, Yalew AW, Bitew BD, Lee J, Bisesi M. Fecal indicator bacteria along multiple environmental exposure pathways (water, food, and soil) and intestinal parasites among children in the rural northwest Ethiopia. BMC Gastroenterology. 2022;22(1). doi:10.1186/s12876-022-02174-4; PMID: 35220951;PMCID: PMC8882269.
  32. Dixit B, Meshram S, Jha AK, Khare R. Parasitic fauna associated with reproductive disorders. Principles and Practices of Canine and Feline Clinical Parasitic Diseases. 2024;161-172. doi: 10.1002/9781394158256.ch16.
  33. Calabrese MG, Ferranti P. Novel foods: New food sources. In: Elsevier eBooks. 2019;271-275. doi: 10.1016/b978-0-08-100596-5.22128-8.
  34. Binda S, Hill C, Johansen E, et al. Criteria to qualify microorganisms as “Probiotic” in foods and dietary supplements. Frontiers in Microbiology. 2020;11. doi:10.3389/fmicb.2020.01662. PMID: 32793153; PMCID: PMC7394020.
  35. Wikandari R, Manikharda, Baldermann S, Ningrum A, Taherzadeh MJ. Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered. 2021;12(2):11305-11330. doi:10.1080/21655979.2021.2003665. PMID: 34779353; PMCID: PMC8810126.
  36. George AS. Cultivating sustainability: The development and potential of cell-cultured beef rice as a novel high-protein food alternative. Zenodo. 2024. doi: 10.5281/zenodo.10800816.
  37. Cavallo G, Lorini C, Garamella G, Bonaccorsi G. Seaweeds as a “Palatable” challenge between innovation and sustainability: A systematic review of food safety. Sustainability. 2021;13(14):7652. doi: 10.3390/su13147652.
  38. Prada OJ, Diaz OL, Rocha KT. Common duckweed (Lemna minor): Food and environmental potential. Review. Revista Mexicana De Ciencias Pecuarias. 2024;15(2):404-424. doi: 10.22319/rmcp.v15i2.6107.
  39. Wanasundara JPD, Kapel R, Albe-Slabi S. Proteins from canola/rapeseed-current status. In: Elsevier eBooks.. 2024;285-309. doi: 10.1016/b978-0-323-91652-3.00004-6.
  40. Mastoraki M, Ferrándiz PM, Vardali SC, et al. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture. 2020;528:735511. doi: 10.1016/j.aquaculture.2020.735511.
  41. Halloran A, Roos N, Eilenberg J, Cerutti A, Bruun S. Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development. 2016;36(4). doi:10.1007/s13593-016-0392-8; PMID: 32010238; PMCID: PMC6961468.
  42. Gałęcki R, Bakuła T, Gołaszewski J. Foodborne diseases in the edible insect industry in Europe—New challenges and old problems. Foods. 2023;12(4):770. doi:10.3390/foods12040770. PMID: 36832845 PMCID: PMC9956073.
  43. Imathiu S. Benefits and food safety concerns associated with consumption of edible insects. NFS Journal. 2020;18:1-11. doi: 10.1016/j.nfs.2019.11.002.
  44. Raheem D, Carrascosa C, Oluwole OB, et al. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Critical Reviews in Food Science and Nutrition. 2018;59(14):2169-2188. doi:10.1080/10408398.2018.1440191. PMID: 29446643.
  45. Selaledi L, Hassan Z, Manyelo TG, Mabelebele M. Insects’ Production, Consumption, Policy, and Sustainability: What Have We Learned from the Indigenous Knowledge Systems? Insects. 2021;12(5):432. doi:10.3390/insects12050432. PMID: 34064777; PMCID: PMC8150288.
  46. Wilson AJ, Morgan ER, Booth M, et al. What is a vector? Philosophical Transactions - Royal Society Biological Sciences. 2017;372(1719):20160085. doi:10.1098/rstb.2016.0085. PMID: 28289253; PMCID: PMC5352812.
  47. Anisuzzaman N, Hossain MdS, Hatta T, et al. Food- and vector-borne parasitic zoonoses: Global burden and impacts. Advances in Parasitology/Advances in Parasitology. Published online January 1, 2023:87-136. doi:10.1016/bs.apar.2023.02.001; PMID: 36948728
  48. Jones RS, Fenton A, Speed MP. “Parasite-induced aposematism” protects entomopathogenic nematode parasites against invertebrate enemies. Behavioral Ecology. 2015;27(2):645-651. doi:10.1093/beheco/arv202; PMID: 27004015; PMCID: PMC4797382.
  49. Cantalapiedra F, Juan-Garcia A, Juan C. Perception of food risk of entomophagy among higher education students: Exploring insects as a novel food source. Foods. 2023. doi: 10.20944/preprints202311.0462.v1.
  50. Belluco S, Bertola M, Montarsi F, et al. Insects and Public Health: An Overview. Insects. 2023;14(3):240. doi:10.3390/insects14030240. PMID: 36975925; PMCID: PMC10059202.
  51. Vandeweyer D, De Smet J, Van Looveren N, Van Campenhout L. Biological contaminants in insects as food and feed. Journal of Insects as Food and Feed. 2021;7(5):807-822. doi:10.3920/jiff2020.0060. PMID: 29510743; PMCID: PMC5840809.
  52. Gaafar, Mady RF, Diab RG, Shalaby ThI. Chitosan and silver nanoparticles: Promising anti-toxoplasma agents. Experimental Parasitology. 2014;143:30-38. doi:10.1016/j.exppara.2014.05.005. PMID: 24852215.
  53. Chávez-Ruvalcaba F, Chávez-Ruvalcaba MI, Santibañez KM, Muñoz-Carrillo JL, Coria AL, Martínez RR. Foodborne Parasitic Diseases in the Neotropics – a review. Helminthologia. 2021;58(2):119-133. doi:10.2478/helm-2021-0022. PMID: 34248373; PMCID: PMC8256457.
  54. Al-Malki ES. Toxoplasmosis: stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Al-Mi’galaẗ Al-sa’udiyaẗ Lī-ulum Al-ḥayaẗ. 2021;28(1):962-969. doi:10.1016/j.sjbs.2020.11.007. PMID: 33424388; PMCID: PMC7783816.
  55. Pinto DJ, Vinayak S. Cryptosporidium: Host-Parasite interactions and Pathogenesis. Current Clinical Microbiology Reports. 2021;8(2):62-67. doi:10.1007/s40588-021-00159-7; PMID: 33585166; PMCID: PMC7868307
  56. Gottstein B, Pozio E, NöCkler K. Epidemiology, diagnosis, treatment, and control of trichinellosis. Clinical Microbiology Reviews. 2009;22(1):127-145. doi:10.1128/cmr.00026-08. PMID: 19136437; PMCID: PMC2620635.
  57. Pires SM, Thomsen ST, Nauta M, Poulsen M, Jakobsen LS. Food safety implications of transitions toward sustainable healthy diets. Food and Nutrition Bulletin. 2020;41(2_suppl):104S-124S. doi:10.1177/0379572120953047. PMID: 33356595.
  58. Almaary KS. Food-Borne diseases and their impact on health. Biosciences Biotechnology Research Asia/Biosciences Biotechnology Research Asia. 2023;20(3):745-755. doi: 10.13005/bbra/3129.
  59. Ganasegeran K, Abdulrahman SA. Epidemiology of neglected tropical diseases. Neglected Tropical Diseases and Phytochemicals in Drug Discovery. 2021;1-36. doi: 10.1002/9781119617143.ch1.
  60. Wang YC, Namsanor J, Law A, Sithithaworn P. A socio-ecological framework for examining foodborne parasitic infection risk. Acta Tropica. 2023;244:106957. doi:10.1016/j.actatropica.2023.106957. PMID: 37269890.
  61. Scharff RL. Food Attribution and Economic Cost Estimates for Meat- and Poultry-Related Illnesses. Journal of Food Protection. 2020;83(6):959-967. doi:10.4315/jfp-19-548. PMID: 32032420.
  62. Gabriël S, Dorny P, Saelens G, Dermauw V. Foodborne parasites and their complex life cycles challenging food safety in different food chains. Foods. 2022;12(1):142. doi:10.3390/foods12010142. PMID: 36613359; PMCID: PMC9818752.
  63. Song L, Xie Q, Lv Z. Foodborne parasitic diseases in China: A scoping review on current situation, epidemiological trends, prevention and control. Asian Pacific Journal of Tropical Medicine. 2021;14(9):385. doi: 10.4103/1995-7645.326252.
  64. Alvar J, Alves F, Bucheton B, et al. Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases. Seminars in Immunopathology. 2020;42(3):231-246. doi:10.1007/s00281-020-00796-y. PMID: 32189034; PMCID: PMC7299918.
  65. Aragrande M, Canali M. Integrating epidemiological and economic models to identify the cost of foodborne diseases. Experimental Parasitology. 2020;210:107832. doi:10.1016/j.exppara.2020.107832. PMID: 32004854.
  66. Banik D. Achieving food security in a sustainable development era. Food Ethics. 2019;4(2):117-121. doi: 10.1007/s41055-019-00057-1.
  67. Lateef M, Nazir M, Zargar SA, Tariq KA. Epidemiology of Taenia saginata taeniasis with emphasis on its prevalence and transmission in a Kashmiri population in India: A prospective study. International Journal of Infectious Diseases. 2020;98:401-405. doi: 10.1016/j.ijid.2020.06.088.
  68. Kalambhe DG, Kaur H, Gill JPS. Trichinella spp. in slaughtered pigs of India: From neglected disease to an emerging food safety threat for public health. Transboundary and Emerging Diseases. 2024;2024:1-9. doi: 10.1155/2024/7550006.
  69. Almeria S, Dubey JP. Foodborne transmission of toxoplasma gondii infection in the last decade. An overview. Research in Veterinary Science. 2021;135:371-385. doi: 10.1016/j.rvsc.2020.10.019.
  70. Innes EA, Hamilton C, Garcia JL, Chryssafidis A, Smith D. A one health approach to vaccines against Toxoplasma gondii. Food and Waterborne Parasitology. 2019;15:e00053. doi:10.1016/j.fawpar.2019.e00053; PMID: 32095623;PMCID: PMC7034027.
  71. Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, et al. Public health risks associated with food‐borne parasites. EFSA Journal. 2018;16(12). doi:10.2903/j.efsa.2018.5495. PMID: 32625781; PMCID: PMC7009631.
  72. Li J, Wang Z, Karim R, Zhang L. Detection of human intestinal protozoan parasites in vegetables and fruits: a review. Parasites & Vectors. 2020;13(1). doi:10.1186/s13071-020-04255-3. PMID: 32727529; PMCID: PMC7392835.
  73. Hajare ST, Gobena RK, Chauhan NM, Erniso F. Prevalence of Intestinal Parasite Infections and Their Associated Factors among Food Handlers Working in Selected Catering Establishments from Bule Hora, Ethiopia. BioMed Research International. 2021;2021:1-15. doi:10.1155/2021/6669742. PMID: 34458370; PMCID: PMC8397551.
  74. Todd E. Food-Borne disease prevention and risk assessment. International Journal of Environmental Research and Public Health/International Journal of Environmental Research and Public Health. 2020;17(14):5129. doi:10.3390/ijerph17145129. PMID: 32708573; PMCID: PMC7399861.
  75. Slany M, Dziedzinska R, Babak V, Kralik P, Moravkova M, Slana I. Toxoplasma gondii in vegetables from fields and farm storage facilities in the Czech Republic. FEMS Microbiology Letters. 2019;366(14). doi:10.1093/femsle/fnz170. PMID: 31365074.
  76. Nooraldeen K. Contamination of public squares and parks with parasites in Erbil city, Iraq. AAEM Annals of Agricultural and Environmental Medicine/Annals of Agricultural and Environmental Medicine. 2015;22(3):418-420. doi:10.5604/12321966.1167705. PMID: 26403106.
  77. Wang M, Bai L, Gong S, Huang L. Determinants of consumer food safety self-protection behavior- an analysis using grounded theory. Food Control. 2020;113:107198. doi: 10.1016/j.foodcont.2020.107198.
  78. Ziarati M, Zorriehzahra MJ, Hassantabar F, et al. Zoonotic diseases of fish and their prevention and control. ˜the œVeterinary Quarterly. 2022;42(1):95-118. doi:10.1080/01652176.2022.2080298. PMID: 35635057; PMCID: PMC9397527.
  79. Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, Van Dooren GG. Control of human toxoplasmosis. International Journal for Parasitology/International Journal for Parasitology. 2021;51(2-3):95-121. doi:10.1016/j.ijpara.2020.11.001. PMID: 33347832.
  80. Kelly A. Using novel tools for risk reduction in pre- and Post-Harvest food safety. IFIS Publishing. 2024.
  81. Fitzpatrick JL. Global food security: The impact of veterinary parasites and parasitologists. Veterinary Parasitology. 2013;195(3-4):233-248. doi:10.1016/j.vetpar.2013.04.005. PMID: 23622818.
  82. Lightowlers MW, Gasser RB, Hemphill A, et al. Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years. International Journal for Parasitology/International Journal for Parasitology. 2021;51(13-14):1167-1192. doi:10.1016/j.ijpara.2021.10.003. PMID: 34757089.
  83. Antczak M, Dzitko K, Długońska H. Human toxoplasmosis–Searching for novel chemotherapeutics. Biomedicine & Pharmacotherapy. 2016;82:677-684. doi:10.1016/j.biopha.2016.05.041. PMID: 27470411.
  84. El-Rahman NIHISMMN Marwa Ahmed Mohammed Salama, Eman Mostafa Abd. Treatment modalities of toxoplasmosis. Tobacco Regulatory Science (TRS). 2023. doi: 10.18001/TRS.9.1.68.
  85. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers. 2023;15(7):1596. doi:10.3390/polym15071596. PMID: 37050210; PMCID: PMC10096782.
  86. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules/Molecules Online/Molecules Annual. 2020;25(9):2193. doi:10.3390/molecules25092193. PMID: 32397080; PMCID: PMC7248934.
  87. Bamarni SSI. Role of nanotechnology in treating of toxoplasma gondii. International Journal of Agriculture and Biosciences. 2023;2:202-212. doi: 10.47278/book.zoon/2023.64.
  88. Arafa FM, Mogahed NMFH, Eltarahony MM, Diab RG. Biogenic selenium nanoparticles: trace element with promising anti-toxoplasma effect. Pathogens and Global Health. 2023;117(7):639-654. doi:10.1080/20477724.2023.2186079. PMID: 36871204; PMCID: PMC10498805.
  89. Maeta M, Miura N, Tanaka H, et al. Vitamin E scaffolds of PH-Responsive lipid nanoparticles as DNA vaccines in cancer and protozoan infection. Molecular Pharmaceutics. 2020;17(4):1237-1247. doi:10.1021/acs.molpharmaceut.9b01262. PMID: 32129629


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search