Covid-19 Research

Short Communication

OCLC Number/Unique Identifier:

From the Nascent Earth to Ante-Cells Molecular Structures?

Biology Group    Start Submission

Michel T and Jacques D*

Volume5-Issue5
Dates: Received: 2023-12-11 | Accepted: 2024-05-23 | Published: 2024-05-23
Pages: 440-444

Abstract

During its early youth, the Earth was the site of extremely violent processes. In particular, the energy of the impact of the planet Theia with the young Earth was such that the latter became entirely covered with a thick layer of molten magma, called the "magma ocean". On the now calmed Earth that we currently know, the objects classified as "living" by our sense organs are distinguished from those classified as "non-living" by two main characteristics: i) living objects have a completely original organic molecular constitution and ii) in contrast to non-living objects, which tend to equilibrate with the outside, living objects never reach equilibrium and are therefore "obligatory dynamical systems" out of equilibrium. It seems that the dynamic characteristic was acquired before the molecular characteristic for the genesis on Earth of the first living object(s). We propose that hypothetical "ante-cells" reached a "dynamic although inorganic" state on the nascent Earth, and then, that these ante-cells gradually transformed into real cells once the Earth had cooled sufficiently for organic molecules to appear there. The vestigial pentameric RNAs would mark this key moment when the ante-cells have begun to join the organic world.

FullText HTML FullText PDF DOI: 10.37871/jbres1912


Certificate of Publication




Copyright

© 2024 Michel T, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Michel T, Jacques D. From the Nascent Earth to Ante-Cells Molecular Structures? J Biomed Res Environ Sci. 2024 May 23; 5(5): 440-444. doi: 10.37871/jbres1912, Article ID: JBRES1912, Available at: https://www.jelsciences.com/articles/jbres1912.pdf


Subject area(s)

References


  1. Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. 2016 Sep 22;537(7621):535-538. doi: 10.1038/nature19355. Epub 2016 Aug 31. PMID: 27580034.
  2. Meunier A. La naissance de la Terre. Dunod, Paris. 2014.
  3. Wilde SA, Valley JW, Peck WH, Graham CM. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature. 2001 Jan 11;409(6817):175-8. doi: 10.1038/35051550. PMID: 11196637.
  4. Onyett IJ, Schiller M, Makhatadze GV, Deng Z, Johansen A, Bizzarro M. Silicon isotope constraints on terrestrial planet accretion. Nature. 2023 Jul;619(7970):539-544. doi: 10.1038/s41586-023-06135-z. Epub 2023 Jun 14. PMID: 37316662; PMCID: PMC10356600.
  5. MILLER SL. A production of amino acids under possible primitive earth conditions. Science. 1953 May 15;117(3046):528-9. doi: 10.1126/science.117.3046.528. PMID: 13056598.
  6. Schrödinger E. What is Life? Cambridge. UK. Cambridge University Press; 1944.
  7. Kauffman S. Answering schrödinger’s "what is life?" Entropy. 2020;22:815. doi: 1099-4300/22/8/815.
  8. Darwin C. On the origin of species by means of natural selection, or, the preservation of favored races in the struggle for life. J Murray. London. 1859.
  9. Oparin AI. The origin of life. New York, Macmillan; 1938.
  10. Dyson F. Origins of life. Cambridge, UK. Cambridge University Press; 1999.
  11. Fox GE. Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol. 2010 Sep;2(9):a003483. doi: 10.1101/cshperspect.a003483. Epub 2010 Jun 9. PMID: 20534711; PMCID: PMC2926754.
  12. Schrum JP, Zhu TF, Szostak JW. The origins of cellular life. Cold Spring Harb Perspect Biol. 2010 Sep;2(9):a002212. doi: 10.1101/cshperspect.a002212. Epub 2010 May 19. PMID: 20484387; PMCID: PMC2926753.
  13. Joyce GF, Szostak JW. Protocells and RNA Self-Replication. Cold Spring Harb Perspect Biol. 2018 Sep 4;10(9):a034801. doi: 10.1101/cshperspect.a034801. PMID: 30181195; PMCID: PMC6120706.
  14. Blain JC, Szostak JW. Progress toward synthetic cells. Annu Rev Biochem. 2014;83:615-40. doi: 10.1146/annurev-biochem-080411-124036. Epub 2014 Mar 3. PMID: 24606140.
  15. Ding D, Zhou L, Giurgiu C, Szostak JW. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates. Nucleic Acids Res. 2022 Jan 11;50(1):35-45. doi: 10.1093/nar/gkab1202. PMID: 34893864; PMCID: PMC8754633.
  16. Björn LO. Stratospheric ozone, ultraviolet radiation and cryptogams. Biol Conservation. 2007;135:326-333. doi: 10.1016/j.biocon.2006.10.006.
  17. Khodachenko ML, Lammer H, Lichtenegger HIM, Grießmeier JM, Holmström M, Ekenbäck A. The role of intrinsic magnetic fields in planetary evolution and habitability: the planetary protection aspect. Proceedings of the International Astronomical Union. 2008;4:283-94. doi: 10.1017/S1743921309030622
  18. Trevors JT, Saier MH. Three laws of biology. Water, Air, and Soil Pollution. 2010;205:87-89. doi: 10.1007/s11270-008-9925-3.
  19. Lovett RA. Tidal heating shrinks the goldilocks zone. Nature. 2012;485:10601.
  20. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular biology of the cell. W.W. Norton & Company, New York, USA; 2017.
  21. Ramirez R. A More Comprehensive Habitable Zone for Finding Life on Other Planets. Geosciences. 2018;8:280. doi: 10.3390/geosciences8080280.
  22. Cech TR, Steitz JA, Atkins JF. RNA worlds: New tools for deep exploration. New York. Cold Spring Harbor Laboratory Press; 2019.
  23. Kahana A, Schmitt-Kopplin P, Lancet D. Enceladus: First Observed Primordial Soup Could Arbitrate Origin-of-Life Debate. Astrobiology. 2019 Oct;19(10):1263-1278. doi: 10.1089/ast.2019.2029. Epub 2019 Jul 22. PMID: 31328961; PMCID: PMC6785169.
  24. Osinski GR, Cockell CS, Pontefract A, Sapers HM. The Role of Meteorite Impacts in the Origin of Life. Astrobiology. 2020 Sep;20(9):1121-1149. doi: 10.1089/ast.2019.2203. Epub 2020 Sep 1. PMID: 32876492; PMCID: PMC7499892.
  25. Siraj A, Loeb A. Breakup of a long-period comet as the origin of the dinosaur extinction. Sci Rep. 2021 Feb 15;11(1):3803. doi: 10.1038/s41598-021-82320-2. PMID: 33589634; PMCID: PMC7884440.
  26. Vlachakis D, Chrousos G, Eliopoulos E. On the origins of life: A molecular and a cellular journey driven by genentropy. International Journal of Epigenetics. 2021;1:7. doi: 10.3892/ije.2021.7.
  27. Demongeot J, Thellier M. Primitive Oligomeric RNAs at the Origins of Life on Earth. Int J Mol Sci. 2023 Jan 23;24(3):2274. doi: 10.3390/ijms24032274. PMID: 36768599; PMCID: PMC9916791.
  28. Thellier M. Origins of life: proposal for an alternative approach. Progress Bot. 2024;84:47-52. doi: 10.1007/124_2023_70.
  29. Demongeot J. On the possibility of considering the genetic code as a chain code. Biomaths Review. 1978;62:61-6.
  30. Demongeot J, Besson J. Genetic code and chaining codes. C.R. Acad. Sc. Ser. III. 1983;296:807-10
  31. Demongeot J, Moreira A. A possible circular RNA at the origin of life. J Theor Biol. 2007 Nov 21;249(2):314-24. doi: 10.1016/j.jtbi.2007.07.010. Epub 2007 Jul 20. PMID: 17825325.
  32. Demongeot J, Seligmann H. Evolution of small and large ribosomal RNAs from accretion of tRNA subelements. Biosystems. 2022 Dec;222:104796. doi: 10.1016/j.biosystems.2022.104796. Epub 2022 Oct 25. PMID: 36306879.
  33. Demongeot J, Gardes J, Maldivi C, Boisset D, Boufama K, Touzouti I. Genomic phylogeny by Maxwell®, a new classifier based on Burrows-Wheeler transform. Computation. 2023;11:158. doi: 10.3390/computation11080158.
  34. Gardes J, Maldivi C, Boisset D, Aubourg T, Demongeot J. An Unsupervised Classifier for Whole-Genome Phylogenies, the Maxwell© Tool. Int J Mol Sci. 2023 Nov 13;24(22):16278. doi: 10.3390/ijms242216278. PMID: 38003468; PMCID: PMC10671764.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search