Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Method for Calculating the Engineering Design of a Mobile Bioreactor for Organic Waste Processing

Biology Group    Start Submission

Penjiyev Ahmet Myradovich* and Babaev Meilis Baymyradovich

Dates: Received: 2024-03-23 | Accepted: 2024-04-24 | Published: 2024-04-30
Pages: 392-402


The article discusses the engineering calculation methodology for developing the design of a mobile bioreactor for processing organic waste. The calculations for processing organic waste were based on SNiP, instructions and methods of leading scientists. When calculating the mobile bioreactor, we took into account: the limit of decomposition of fats, proteins, carbohydrates and the formation of biogas with the density of the mixture. A diagram of the phase process of ongoing and sequential decomposition with the maximum possibility of fermentation for an organic mixture with activated sludge over time, under aerobic and anaerobic conditions during waste disposal, is presented. The advantages and disadvantages of dry and wet waste processing methods are analyzed. From the calculations obtained, we can draw the following conclusion: in a bioreactor with a volume of 7.5 liters, in thermophilic mode, and with a volume of 15 liters, in mesophilic mode, approximately 50% of the organic mixture is fermented, and with activated sludge with a wet substrate, about 95%.

FullText HTML FullText PDF DOI: 10.37871/jbres1905

Certificate of Publication


© 2024 Myradovich PA, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Myradovich PA, Baymyradovich BM. Method for Calculating the Engineering Design of a Mobile Bioreactor for Organic Waste Processing. J Biomed Res Environ Sci. 2024 Apr 30; 5(4): 392-402. doi: 10.37871/jbres1905, Article ID: JBRES1905, Available at:

Subject area(s)


  1. Berdimuhamedov GM. Turkmenistan is on the path to achieving the sustainable development goals. Ashgabat: Turkmen State Publishing Service. 2018.
  2. Penjiyev AM. Eco-energy resources of renewable energy sources: Monograph. 2023.
  3. Penjiyev AM. Green industrialization. Germany: Lap lambert Academic Publishing. 2016.
  4. Penjiyev AM. Ecological problems of desert development: Monograph. Germany: Lap lambert Academic Publishing. 2014.
  5. Zulkifli AA, Mohd Yusoff MZ, Abd Manaf A, MR, Roslan AM, Ariffin H, Shirai Y, Hassan MA. Assessment of municipal solid waste generation in university putra Malaysia and its potential for green energy production. Sustainability. 2019;11(14):3909-3909. doi: 10.3390/su11143909.
  6. Zamotaev IV, Ivanov IV, Mikheev PV, Belovrov VP. Assessment of the state of soils and vegetation in areas of landfills and municipal solid waste sites (a review). Eurasian Soil Science. 2018;51(7):827-842. doi: 10.1134/S1064229318070104.
  7. Khairuddin N, Abd Manaf L, Hassan MA, Halimoon N, Ab Karim WAW. Biogas harvesting from organic fraction of municipal solid waste as a renewable energy resource in Malaysia: A Review. Polish Journal of Environmental Studies. 2015;24(4):1477-1490. doi: 10.15244/pjoes/34670.
  8. Mainardis M, Cabbai V, Zannier G, Visintini D, Goia D. Characterization and bmp tests of liquid substrates for high-rate anaerobic digestion. Chemical and Biochemical Engineering Quarterly. 2017;31(4):509-518. doi: 10.15255/CABEQ.2017.1083.
  9. Fernandes A, Jesus T, Silva R, Pacheco MJ, Ciriaco L, Lopes A. Effluents from anaerobic digestion of organic wastes: treatment by chemical and electrochemical processes. Water, Air & Soil Pollution. 2017;228(11):1-8. doi: 10.1007/s11270-017-3620-1.
  10. Mlaik N, Khcharem M, Kouas M, Sayadi S, Khoufi S. Improvement of anaerobic biodegradability of organic fraction of municipal solid waste by mechanical and thermochemical pretreatments. Int J Environ Sci Technol. 2018;15:1913-1920. doi: 10.1007/s13762-017-1563-0.
  11. Jimenez J, Latrille E, Harmand J, Robles A, Ferrer J, Gaida D, Wolf C, Mairet F, Bernard O, Alcaraz-Gonzalez V, Mendez-Acosta H, Zitomer D, Totzke D, Spanjers H, Jacobi F, Guwy A, Dinsdale R, Premier G, Mazhegrane S, Ruiz-Filippi G, Seco A, Ribeiro T, Pauss A, Steyer J P. Instrumentation and control of anaerobic digestion processes: A review and some research challenges. Rev Environ Sci Biotechnol. 2015;14:615-648. doi 10.1007/s11157-015-9382-6.
  12. Stan C, Collaguazo G, Streche C, Apostol T, Cocarta DM. Pilot-scale anaerobic co-digestion of the ofmsw: Improving biogas production and startup. Sustainability. 2018;10(6):1939. doi: 10.3390/su10061939.
  13. Sayara, T, Sánchez A. A review on anaerobic digestion of lignocellulosic wastes: Pretreatments and operational conditions. Applied Sciences. 2019;9(4655):1-23. doi:10.3390/app9214655.
  14. Li L, He Q, Ma Y, Wang X, Peng X. A mesophilic anaerobic digester for treating food waste: Process stability and microbial community analysis using pyro sequencing. Microbial Cell Factories. 2016;15(65):1-11. doi: 10.1186/s12934-016-0466-y.
  15. Gao Y, Kong X, Xing T, Sun Y, Zhang Y, Luo X, Sun Y. Digestion performance and microbial metabolic mechanism in thermophilic and mesophilic anaerobic digesters exposed to elevated loadings of organic fraction of municipal solid waste. Energies. 2018;11(4):952. doi: 10.3390/en11040952.
  16. Ranieri L, Mossa G, Pellegrino R, Digiesi S. Energy recovery from the organic fraction of municipal solid waste: A real options-based facility assessment. Sustainability. 2018;10:1-15. doi:10.3390/su10020368.
  17. Richard EN, Hilonga A, Machunda RL, Njau KN. A review on strategies to optimize metabolic stages of anaerobic digestion of municipal solid wastes towards enhanced resource recovery. Sustainable Environment Research. 2019; 29(36):1-13. doi: 10.1186/s42834-019-0037-0.
  18. Rajagopal R, Bellavance D, Rahaman MdS. Psychrophilic anaerobic digestion of semi-dry mixed municipal food waste: For North American context. Process Safety and Environmental Protection. 2017;105:101-108. doi: 10.1016/j.psep.2016.10.014.
  19. Chatterjee B, Mazumder D. Anaerobic digestion for the stabilization of the organic fraction of municipal solid waste: A review. Environmental Reviews. 2016;24(4):426-459. doi: 10.1139/er-2015-0077.
  20. Kang J, Kwon G, Nam JH, Kim YO, Jahng D. Carbon dioxide stripping from anaerobic digestate of food waste using two types of aerators. International Journal of Environmental Science and Technology. 2017;14:1397-1408. doi: 10.1007/ s 13762-017-1250-1.
  21. Shubarkol. The black pearl of Sary-Arka.
  22. Shishelova TI. Samuseva MN, Shenkman BM. Using ASW as a sorbent for wastewater treatment. Modern Science Intensive Technologies. 2008;5:20-22.
  23. Orlov DS. Soil chemistry. 1985.
  24. Musina USh. News of the St. Petersburg State Technological Institute. 2014;23(49):79-82.
  25. Musina USh. Ecological potential of Koksu shungite. Hydrometeorology and Ecology. 2010;4:154-159.
  26. Musina USh. Study of the bleaching ability of Koksu shungite rocks. Bulletin of KazNTU. 2011;1(83):85-90.
  27. Musina USh. Study of the physico-chemical properties of Koksu shungite rocks. Bulletin of KazNTU. 2010;6(82):3-7.
  28. Musina USh, Kozmin NB, Kutybaev NR, Nurdildanova BE. Study of the influence of koksu shungite (taurite) on the oxygen content in aqueous solutions. Bulletin of KazNTU. 2012;1(89):221-225.
  29. External networks and sewerage.
  30. Abramov NF, Vaisman YaI, Maksimova SV, Glushankova IS, Batrakova GM, Vaisman OYa, Korotaev VLN. Rudakova LVM, Gosstroy RF. Recommendations for calculating the formation of biogas and choosing degassing systems for solid waste disposal sites. 2003.
  31. Yakovlev SV, Karelin YaA, Zhukov AI, Kolobanov SK, Sewerage. 5th ed. Stroyizdat M, editor. 1975.
  32. Kovalev NG, Pogrebnaya NP, Egorova OG. Cleaning and disposal on cattle farms. Animal Husbandry. 1981;2:20-22.
  33. Voronov YV, Yakovlev SV. Water disposal and wastewater treatment. Publishing House of the Association of Construction Universities. 2006.


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search