Covid-19 Research

Opinion

OCLC Number/Unique Identifier:

Posidonia oceanica Meadows as Carbon Sink in the Mediterranean Sea

Environmental Sciences    Start Submission

Nicola Cantasano*

Volume5-Issue4
Dates: Received: 2024-04-06 | Accepted: 2024-04-13 | Published: 2024-04-15
Pages: 307-311

Abstract

Posidonia oceanica in one of the most important endemic species of Mediterranean Sea. In pristine coastal seawaters, it forms extensive meadows on mobile and hard substrata. Posidonia beds provide a lot of ecological roles and, amongst them, there is new ecosystem service known as “Blue Carbon”. This important function is the potential, performed by the meadows, to reduce the increasing concentration of carbon dioxide in the terrestrial atmosphere, binding it as organic matter in the leaves of the plants and, also, in the sediment of this valuable ecosystem. This study aims to assess the process of carbon sequestration performed by Posidonia beds and the dynamics of carbon storage through the different levels of the meadows.

FullText HTML FullText PDF DOI: 10.37871/jbres1897


Certificate of Publication




Copyright

© 2024 Cantasano N. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Cantasano N. Posidonia oceanica Meadows as Carbon Sink in the Mediterranean Sea. J Biomed Res Environ Sci. 2024 Apr 15; 5(4): 307-311. doi: 10.37871/jbres1897, Article ID: JBRES1897, Available at: https://www.jelsciences.com/articles/ jbres1897.pdf


Subject area(s)

References


  1. Ghirardelli E. La vita nelle acque. ed. Torino: UTET; 1981.
  2. Pasqualini V, Pergent-Martini C, Clabaut P, Pergent G. Mapping of Posidonia oceanica using aerial photographs and side scan sonar: Application off the island of Corsica (France). Estuarine Coastal and Shelf Science. 1998;47:359-367. doi: 10.1006/ecss.1998.0361.
  3. Traganos D, Lee CB, Blume A, Poursanidis D, Cizmek H, Deter J, Macic V, Montefalcone M, Pergent G, Pergent-Martini C, Ricart AM, Reinartz P. Spatially explicit sea grass extent mapping across the entire Mediterranean. Front. Mar. Sci. 2022;9:871799. doi: 10.3389/fmars.2022.871799.
  4. Telesca L, Belluscio A, Criscoli A, Ardizzone G, Apostolaki ET, Fraschetti S, Gristina M, Knittweis L, Martin CS, Pergent G, Alagna A, Badalamenti F, Garofalo G, Gerakaris V, Louise Pace M, Pergent-Martini C, Salomidi M. Sea grass meadows (Posidonia oceanica) distribution and trajectories of change. Sci Rep. 2015 Jul 28;5:12505. doi: 10.1038/srep12505. PMID: 26216526; PMCID: PMC4516961.
  5. Marbà M, Diaz-Almela E, Duarte C. Mediterranean sea grass (Posidonia oceanica) loss between 1842 and 2009. Biological Conservation. 2014;176:183-190. doi:10.1016/j.biocon.2014.05.024.
  6. Pergent G, Pergent-Martini C, Bein A, Dedeken M, Oberti P, Orsini A, Santucci JF, Short F. Dynamic of Posidonia oceanica sea grass meadows in the northwestern Mediterranean: Could climate change be to blame? C R Biol. 2015 Jul;338(7):484-93. doi: 10.1016/j.crvi.2015.04.011. Epub 2015 Jun 4. PMID: 26051038.
  7. Marbà N, Duarte CM. Rhizome elongation and sea grass clonal growth. Mar. Ecol. Progr. Ser.1998;174:269-280.
  8. Jordà G, Marbà N, Duarte CM. Mediterranean sea grass vulnerable to regional climate warming. Nat. Clim. Change. 2012;2:821-824. doi:10.1038/nclimate1533.
  9. Borum J, Duarte CM, Krause-Jensen D, Greve TM. European sea grasses: An introduction to monitoring and management. 2004.
  10. Pergent G, Boudouresque CF, Dumay O, Pergent-Martini C, Wyllie-Echeverria S. Competition between the invasive macrophyte Caulerpa taxifolia and the seagrass Posidonia oceanica: contrasting strategies. BMC Ecol. 2008 Dec 11;8:20. doi: 10.1186/1472-6785-8-20. PMID: 19077242; PMCID: PMC2621152.
  11. Pergent G, Bazairi H, Bianchi CN, Boudouresque CF, Buia MC, Clabaut P, Harmelin-Vivien M, Mateo MA, Montefalcone M, Morri C, Orfanidis S, Pergent-Martini C, Semroud R, Serrano O, Verlaque M. Mediterranean sea grass meadows: Resilience and contribution to climate change mitigation. IUCN publ. 2012;1-40.
  12. Boudouresque C, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, Pergent G, Pergent-Martini C, Ruitton S, Tunesi L. Protection and conservation of Posidonia oceanica meadows. RAMOGE and RAC/SPA Publishers, Tunis. 2012;1-202.
  13. Fourqurean JW, Duarte CM, Kennedy H, Núria M, Marianne H, Miguel AM, Eugenia TA, Gary AK, Dorte KJ, Karen J. McGlathery, Oscar S. Sea grass ecosystem as a globally significant carbon stock. Nat. Geosci. 2012;5(7):505-509.
  14. Kouki S, Saidi N, Ben Rajeb A, Brahmi M, Bellila A, Fumio M, Hefiène A, Jedidi N, Downer J, Ouzari H. Control of fusarium wilt of tomato caused by fusarium oxysporum F. Sp. Radicis - Lycopersici using mixture of vegetable and Posidonia oceanica compost. Appl. Environ. Soil Sci. 2012;239639:1-11. doi: 10.1155/2012/239639.
  15. Barbier EB, Hacker SD, Kennexdy C, Evamaria WK, Adrian CS, Brian RS. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011;81(2):169-193. doi: 10.1890/10-1510.1.
  16. Campagne CS, Salles JM, Boissery P, Deter J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar Pollut Bull. 2015 Aug 15;97(1-2):391-400. doi: 10.1016/j.marpolbul.2015.05.061. Epub 2015 May 28. PMID: 26028167.
  17. Alongi D. Blue carbon: Coastal sequestration for climate change mitigation. ed. Switzerland: Springer; 2018.
  18. Crooks S, Windham-Myers L, Trozler TG. Defining blue carbon: The emergence of a climate content for coastal carbon dynamics. In: A blue carbon primer: The state of coastal wetland carbon science, practice, and policy. Windham-Myers L, Crooks S, Troxler TG, editors. Boca Raton,USA: CRC Press; 2019. p.1-83. doi: 10.1201/9780429435362.
  19. Doney SC, Fabry VJ, Feely RA, Kleypas JA. Ocean acidification: The other CO2 problem. Ann Rev Mar Sci. 2009;1:169-92. doi: 10.1146/annurev.marine.010908.163834. PMID: 21141034.
  20. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol. 2013 Jun;19(6):1884-96. doi: 10.1111/gcb.12179. Epub 2013 Apr 3. PMID: 23505245; PMCID: PMC3664023.
  21. Cornwall CE, Comeau S, De Carlo TM, Larcombe E, Moore B, Giltrow K, McCulloch MT. Coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nature Climate Change. 2020;10(2):143-146. doi:10.1038/s41558-019-0681-8.
  22. Duarte CM, Losada IJ, Hendrix IE, Mazarrasa I, Marba N. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change. 2013;3(11):961-968. doi: 10.1038/nclimate1970.
  23. Nelleman C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G. Blue carbon: A rapid response assessment. UNEP, Arendal, Norway, 2009;1-78.
  24. Laffoley D, Grimsditch G. The management of natural coastal carbon sinks. Switzerland: IUCN; 2009.
  25. MacCord F, Mateo MA. Estimating the size of the carbon sink represented by Posidonia oceanica meadows along the coasts of the Balearic Islands. Projecto final de investigation, Master en Cambio Global. UIMP-CSIC, Espana, 2010.
  26. Romeo M, Gnassia-Barelli S, Juhcl T, Meinesz A. Memorization of heavy metals by scales of the sea grass Posidonia oceanica, collected in the NW Mediterranean. Mar. Ecol. Progr. Ser. 1995;120(1-3):211-218.
  27. Serrano O, Mateo MA, Renom P, Julià R. Characterization of soils beneath a Posidonia oceanica meadow. Geoderma, 2012;185:26-36. Doi: 10.1016/j.geoderma.2012.03.020.
  28. Serrano O, Lavery PS, Rozaimi M, Gary AK, Antoni C, Paul HY, Andy S, Peter IM. Influence of water depth on the carbon sequestration capacity of sea grass. Glob. Biogeochem. Cycles, 2014;28:950-961. doi: 10.5194/bg-13-4915-2016.
  29. Serrano O, Lavery PS, Duarte CM et al. Can mud (silt and clay) concentration be used to predict soil organic carbon content within sea grass ecosystems? Biosci. 2016;13:4915-4926. doi: 10.5194/bg-13-4915-2016.
  30. Lo Iacono C, Mateo MÁ, Gràcia, E, Lluis G, Ramon C, Laura S, Oscar S, Juanjo D. Very high-resolution seismo-acoustic imaging of sea grass meadows (Mediterranean Sea): Implications for carbon sink estimates. Geophys. Res. Lett. 2008;35(18):1-5. doi: 10.1029/2008GL034773.
  31. Canals M, Ballesteros E. Production of carbonate particles by phytobenthic communities on the Mallorca-Minorca shelf, northwestern Mediterranean Sea. Deep Sea Res. 1997;44:611-629. doi: 10.1016/S0967-0645(96)00095-1.
  32. Bonacorsi M, Bréand N, Clabaut P, Daniel B, Marengo M, Pergent G, Pergent-Martini C, Verlaque M. Cartography of main coastal ecosystems (coralligenous and rhodolith beds) along the Corsican coasts. In: Langar H, Bouafif C, Ouerghi A, Editors. Proceedings of the 2nd Mediterranean Symposium on the conservation of Coralligenous & other Calcareous BioConcretions. UNEP/MAP-RAC/SPA publ., Tunis; 2014, Portorož, Slovenia. 37-42.
  33. Saderne V, Geraldi NR, Macreadie PI, Maher DT, Middelburg JJ, Serrano O, Almahasheer H, Arias-Ortiz A, Cusack M, Eyre BD, Fourqurean JW, Kennedy H, Krause-Jensen D, Kuwae T, Lavery PS, Lovelock CE, Marba N, Masqué P, Mateo MA, Mazarrasa I, McGlathery KJ, Oreska MPJ, Sanders CJ, Santos IR, Smoak JM, Tanaya T, Watanabe K, Duarte CM. Role of carbonate burial in Blue Carbon budgets. Nat Commun. 2019 Mar 7;10(1):1106. doi: 10.1038/s41467-019-08842-6. PMID: 30846688; PMCID: PMC6405941.
  34. Molinier R, Picard J. Recherches sur les herbiers de Phanérogames marines du littoral méditerranéen français. Ann. Inst. Oceanogr. Paris: Masson; 1952;27(3):157-234.
  35. Young CS, Gobler CJ. The ability of macroalgae to mitigate the negative effects of ocean acidification on four species of North Atlantic bivalve. Biosci. 2018;15:6167-6183. doi: 10.5194/bg-15-6167-2018.
  36. Whal M, Schneider Covacha S, Saderne V, Hiebenthal C, Jens Daniel M, Pansch C, Sawall Y. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations. Limnol. Oceanogr. 2018;63:3-21. doi: 10.1002/lno.10608.
  37. Falkenberg LJ, Scanes E, Ducker J, Ross PM. Biotic habitats as refugia under ocean acidification. Conserv Physiol. 2021 Sep 16;9(1):coab077. doi: 10.1093/conphys/coab077. PMID: 34540232; PMCID: PMC8445512.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search