Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Chemical-Biological Activity of Nanodiamond Colloids

Biology Group    Start Submission

Stepan S Batsanov*, Sergey M Gavrilkin, Dmitry A Dankin, Alexander V Kurakov and Andrei S Batsanov

Dates: Received: 2024-03-22 | Accepted: 2024-04-04 | Published: 2024-04-06
Pages: 296-302


The study of the Nanoscale Diamonds (NDs) and their water suspensions has opened huge opportunities for their technological and biomedical applications. Therefore, the interaction of ND with water is actively studied. However, insufficient attention has been paid to the biochemical behavior of suspensions with low carbon content, despite their great scientific prospects. This work aims to fill this gap in scientific literature.

FullText HTML FullText PDF DOI: 10.37871/jbres1895

Certificate of Publication


© 2024 Batsanov SS, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Batsanov SS, Gavrilkin SM, Dankin DA, Kurakov AV, Batsanov AS. Chemical-Biological Activity of Nanodiamond Colloids. J Biomed Res Environ Sci. 2024 Apr 06; 5(4): 296-302. doi: 10.37871/jbres1895, Article ID: JBRES1895, Available at: https://

Subject area(s)


  1. Krueger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chemistry. 2008;14(5):1382-90. doi: 10.1002/chem.200700987. PMID: 18033700.
  2. Shugalei IV, Voznyakovskii AP, Garabadzhiu AV, Tselinskii IV, Sudarikov AM, Ilyushin MA. Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russ J Gen Chem. 2013;83:851-883. doi: 10.1134/S1070363213050010.
  3. Shenderova OA, McGuire GE. Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases. 2015 Sep 5;10(3):030802. doi: 10.1116/1.4927679. PMID: 26245200.
  4. Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev. 2022 Jun 6;51(11):4287-4336. doi: 10.1039/d1cs00343g. PMID: 35471996.
  5. Dekhtyar Y, Abols D, Avotina L, Stoppel A, Balakin S, Khroustalyova G, Opitz J, Sorokins H, Beshchasna N, Tamane P, Rapoport A. Effects of diamond nanoparticles immobilisation on the surface of yeast cells: A phenomenological study. Fermentation. 2023;9:162. doi: 10.3390/fermentation9020162.
  6. Batsanov SS, Gavrilkin SM, Batsanov AS, Poyarkov KB, Kulakova II, Johnson DW, Mendis BG. Giant dielectric permittivity of detonation-produced nanodiamond is caused by water. J Mater Chem. 2012;22:11166-11172. doi: 10.1039/C2JM30836C.
  7. Kulvelis Yu V, Shvidchenko AV, Aleksenskii AE, Yudina EB, Lebedev VT, Shestakov MS, Dideikin AT, Khozyaeva LO, Kuklin AI, Töröke GY, Rulev MI, Vul’ AYa. Stabilization of detonation nanodiamonds hydrosol in physiological media. Diam Relat Mater. 2018;87:78-89. doi: 10.1016/j.diamond.2018.05.012.
  8. Petit T, Yuzawa H, Nagasaka R, Yamanoi M, Osawa E, Kosugi N, Aziz EF. Probing interfacial water on nanodiamonds in colloidal dispersion. J Phys Chem Lett. 2015;6:2909-2912. doi: 10.1021/acs.jpclett.5b00820.
  9. Ozawa M, Inaguma M, Takahashi M, Kataoka F, Krüger A, Osawa E. Preparation and behavior of brownish, clear nanodiamond colloids. Adv Mater. 2007;19:1201-1206. doi: 10.1002/adma.200601452.
  10. Korobov MV, Batuk MM, Avramenko NV, Ivanova NI, Rozhkova NN, Osawa E. Aggregate structure of single-nano buckydiamond in gel and dried powder by differential scanning calorimetry and nitrogen adsorption. Diam Relat Mater. 2010;19:665-671. doi: 10.1016/j.diamond.2010.02.032.
  11. Williams OA, Hees J, Dieker C, Jäger W, Kirste L, Nebel CE. Size-dependent reactivity of diamond nanoparticles. ACS Nano. 2010 Aug 24;4(8):4824-30. doi: 10.1021/nn100748k. PMID: 20731457.
  12. Batsanov SS, Poyarkov KB, Gavrilkin SM, Lesnikov EV, Schlegel VR. Orientation of water molecules by the diamond surface. Russ J Phys Chem. 2011;85:712-715. doi: 10.1134/S0036024411040054.
  13. Panich AM, Salti M, Goren SD, Yudina EB, Aleksenskii AE, Vul’ AYa, Shames AI. Gd(III)-grafted detonation nanodiamonds for MRI contrast enhancement. J Phys Chem C. 2019;123:2627-2641. doi: :10.1021/acs.jpcc.8b11655.
  14. Panich AM, Salti M, Prager O, Swissa E, Kulvelis YV, Yudina EB, Aleksenskii AE, Goren SD, Vul' AY, Shames AI. PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magn Reson Med. 2021 Aug;86(2):935-942. doi: 10.1002/mrm.28762. Epub 2021 Mar 16. PMID: 33724543.
  15. Panich AM, Salti M, Aleksenskii AE, Kulvelis YuV, Chizhikova A, Vul’ AYa, Shames AI. Suspensions of manganese-grafted nanodiamonds: preparation, NMR and MRI study. Diamond Relat Mater. 2023;131:109591. doi: 10.1016/j.diamond.2022.109591.
  16. Batsanov SS, Guriev DL, Gavrilkin SM, Hamilton KA, Lindsey K, Mendis BG, Riggs HJ, Batsanov AS. On the nature of fibres grown from nanodiamond colloids. Mater Chem Phys. 2016;173:325-332. doi: 10.1016/j.matchemphys.2016.02.019.
  17. Kurakov AV, Batsanov AS, Gavrilkin SM, Batsanov SS. Nitrogen Fixation and Biological Behavior of Nanodiamond Colloidal Solutions. Chempluschem. 2020 Aug;85(8):1905-1911. doi: 10.1002/cplu.202000437. PMID: 32845079.
  18. Salman A, Tsror L, Pomerantz A, Moreh R, Mordechai S, Huleihel M. FTIR spectroscopy for detection and identification of fungal phytopathogenes. Spectroscopy. 2010;24:261-267. doi: 10.3233/SPE-2010-0448.
  19. Batsanov SS, Gavrilkin SM, Shatalova TB, Mendis BG, Batsanov AS. Fixation of atmospheric nitrogen by nanodiamonds. New J Chem. 2018;42:11160-11164. doi: 10.1039/C8NJ01425F.
  20. Panich AM, Sergeev NA, Shames AI, Osipov VY, Boudou JP, Goren SD. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. J Phys Condens Matter. 2015 Feb 25;27(7):072203. doi: 10.1088/0953-8984/27/7/072203. Epub 2015 Feb 3. PMID: 25646270.
  21. Yang CC, Mai YW. Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater Sci Engin R. 2014;79:1-40. doi: 10.1016/j.mser.2014.02.001.
  22. Qi W. Nanoscopic Thermodynamics. Acc Chem Res. 2016 Sep 20;49(9):1587-95. doi: 10.1021/acs.accounts.6b00205. Epub 2016 Jun 29. PMID: 27355129.
  23. Batsanov SS, Dan’kin DA. Size effect in cohesive energy of elements. Mater Chem Phys. 2017;196:245-248. doi: 10.1023/A:1020904317133.
  24. Shandiz MA, Safaei A, Sanjabi S, Barber ZH. Modeling the cohesive energy and melting point of nanoparticles by their average coordination number. Solid State Commun. 2008;145:432-437. doi: 10.1016/j.jpcs.2008.03.014.
  25. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev. 2014 Apr 23;114(8):4041-62. doi: 10.1021/cr400641x. Epub 2014 Jan 27. PMID: 24467365; PMCID: PMC4012840.
  26. Mironova EYu, Ermilova EE, Efimov MN, Zemtsov LM, Orekhova NV, Karpacheva GP, Bondarenko GN, Zhilyaeva NA, Muraviev DN, Yaroslavtsev AB. Detonation nanodiamonds as catalysts of steam reforming of ethanol. Russ Chem Bull. 2013;62:2317-2332.
  27. Varley TS, Hirani M, Harrison G, Holt RB. Nanodiamond surface redox chemistry: Influence of physicochemical properties on catalytic processes. Faraday Discuss. 2014;174:349-64. doi: 10.1039/C4FD00041B.
  28. Führer M, Haasterecht TV, Bitter JH. Molybdenum and tungsten carbides can shine too. Catal Sci Technol. 2020;10(18):6089-6097. doi:10.1039/D0CY01420F.
  29. Hosono H. Spiers memorial lecture: Catalytic activation of molecular nitrogen for green ammonia synthesis: introduction and current status. Faraday Discuss. 2023;243:9-26. doi: 10.1039/D3FD00070B.
  30. Batsanov SS, Gavrilkin SM, Dan'kin DA, Batsanov AS, Kurakov AV, Shatalova TB, Kulikova IM. Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties. Materials (Basel). 2023 Sep 15;16(18):6227. doi: 10.3390/ma16186227. PMID: 37763505; PMCID: PMC10532683.


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search