Covid-19 Research

Opinion

OCLC Number/Unique Identifier:

Antibacterial Surfaces Treated with Metal Ions Incorporation by Low-Energy Ionic Ion Implantation: An Opinion

General Science    Start Submission

Celia de Fraga Malfatti, Victor Velho de Castro, Matheus Bullmann and Cesar Aguzzoli

Volume5-Issue3
Dates: Received: 2024-02-13 | Accepted: 2024-03-26 | Published: 2024-03-28
Pages: 271-278

Abstract

Infectious diseases have been a huge obstacle to human survival for centuries. Despite scientific progress, bacterial infections continue to be among the leading causes of death and disability worldwide. Thus, surface functionalization of materials can be a viable strategy to prevent biofilm formation. In this way, metal ions incorporation, such as silver (Ag+), copper (Cu2+), or zinc (Zn2+), have been proposed due to their antimicrobial properties, and low-energy ionic ion implantation (IPD) as promising alternative surface treatment process. Therefore, this article briefly reports on recent developments in this technique in surface functionalization for antibacterial action. Furthermore, it seeks to point out perspectives for applying the technique and points for improvement for this technology.

FullText HTML FullText PDF DOI: 10.37871/jbres1892


Certificate of Publication




Copyright

© 2024 de Fraga Malfatti C. Distributed under Creative Commons CC-BY 4.0

How to cite this article

de Fraga Malfatti C, de Castro VV, Bullmann M, Aguzzoli C. Antibacterial Surfaces Treated with Metal Ions Incorporation by Low-Energy Ionic Ion Implantation: An Opinion. J Biomed Res Environ Sci. 2024 Mar 28; 5(3): 271-278. doi: 10.37871/ jbres1892, Article ID: JBRES1892, Available at: https://www.jelsciences.com/articles/jbres1892.pdf


Subject area(s)

References


  1. Li Y, Xia X, Hou W, Lv H, Liu J, Li X. How Effective are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int J Nanomedicine. 2023 Mar 1;18:1109-1128. doi: 10.2147/IJN.S397298. PMID: 36883070; PMCID: PMC9985878.
  2. Hori K, Matsumoto S, Bacterial adhesion: From mechanism to control. Biochemical Engineering Journal. 2010;48(3):424-434. doi: 10.1016/j.bej.2009.11.014.
  3. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003 Nov;112(10):1466-77. doi: 10.1172/JCI20365. Erratum in: J Clin Invest. 2007 Jan;117(1):278. PMID: 14617746; PMCID: PMC259139.
  4. Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013 Nov;34(33):8018-29. doi: 10.1016/j.biomaterials.2013.07.048. Epub 2013 Aug 8. PMID: 23932292.
  5. Zidan TA, Abdelhamid AE, Zaki EG. N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. Int J Biol Macromol. 2020 Apr 27:S0141-8130(20)33042-7. doi: 10.1016/j.ijbiomac.2020.04.180. Epub ahead of print. PMID: 32353502.
  6. Cao X, Zhu L, Bai Y, Li F, Yu X. Green one-step synthesis of silver nanoparticles and their biosafety and antibacterial properties. Green Chemistry Letters and Reviews. 2022;15:28-34. doi: 10.1080/17518253.2021.2018506.
  7. Ijaz M, Zafar M, Islam A, Afsheen S, Iqbal T. A Review on antibacterial properties of biologically synthesized zinc oxide nanostructures. J Inorg Organomet Polym. 2020;30:2815-2826. doi: 10.1007/s10904-020-01603-9.
  8. Senocak TC, Ezirmik KV, Aysin F, Simsek Ozek N, Cengiz S. Niobium-oxynitride coatings for biomedical applications: Its antibacterial effects and in-vitro cytotoxicity. Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111662. doi: 10.1016/j.msec.2020.111662. Epub 2020 Oct 21. PMID: 33545828.
  9. Tian Y, Cao H, Qiao Y, Meng F, Liu X. Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation. Acta Biomater. 2014 Oct;10(10):4505-17. doi: 10.1016/j.actbio.2014.06.002. Epub 2014 Jun 7. PMID: 24914826.
  10. Soares TP, Garcia CSC, Roesch-Ely M, Costa da MEHM, Giovanela M, Aguzzoli C. Cytotoxicity and antibacterial efficacy of silver deposited onto titanium plates by low-energy ion implantation. Journal of Materials Research. 2018;33:2545-2553. doi: 10.1557/jmr.2018.200.
  11. Shan J, Jin X, Zhang C, Huang M, Xing J, Li Q, Cui Y, Niu Q, Chen X, Wang X. Metal natural product complex Ru-procyanidins with quadruple enzymatic activity combat infections from drug-resistant bacteria. Acta Pharmaceutica Sinica. 2024. doi: 10.1016/j.apsb.2023.12.017.
  12. Wan YZ, Raman S, He F, Huang Y. Surface modification of medical metals by ion implantation of silver and copper. Vacuum. 2007; 81 :1114-1118. doi: 10.1016/j.vacuum.2006.12.011.
  13. Zheng Y, Li J, Liu X, Sun J. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomedicine. 2012;7:875-84. doi: 10.2147/IJN.S28450. Epub 2012 Feb 21. PMID: 22393287; PMCID: PMC3289444.
  14. Palandi FED, Echeverrigaray FG, Wanke CH, Figueroa CA, Baumvol IJR, Aguzzoli C. Implantação iônica de baixa energia de íons de prata em titânio, scientia cum industria. 2014;2:26-30. doi: 10.18226/23185279.v2iss1p26.
  15. Echeverrigaray FG, Estudo da ação antimicrobiana pela modificação de regiões próximas à superfície de aço inoxidável. 2014
  16. Zamboni TPS. Estudo da ação bactericida em regiões próximas à superfície de titânio e aisi 304 pela incorporação de prata.
  17. Angell CA, Ansari Y, Zhao Z. Ionic liquids: Past, present and future. Faraday Discussions. 2012;154:9-doi: 10.1039/C1FD00112D.
  18. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008 Apr;74(7):2171-8. doi: 10.1128/AEM.02001-07. Epub 2008 Feb 1. PMID: 18245232; PMCID: PMC2292600.
  19. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013 Jun;11(6):371-84. doi: 10.1038/nrmicro3028. Epub 2013 May 13. PMID: 23669886.
  20. Ahmed NAG. Ion plating: Optimum surface performance and material conservation. Thin Solid Films 1994;241:179-187. doi: 10.1016/0040-6090(94)90422-7.
  21. Echeverrigaray FG, Echeverrigaray S, Delamare APL, Wanke CH, Figueroa CA, Baumvol IJR Aguzzoli C, Antibacterial properties obtained by low-energy silver implantation in stainless steel surfaces. Surface and Coatings Technology. 2016;307:345-351. doi: 10.1016/j.surfcoat.2016.09.005.
  22. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011 Aug;32(24):5706-16. doi: 10.1016/j.biomaterials.2011.04.040. Epub 2011 May 12. PMID: 21565401.
  23. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009 Aug;34(2):103-10. doi: 10.1016/j.ijantimicag.2009.01.017. Epub 2009 Mar 31. PMID: 19339161.
  24. Palandi FED, Echeverrigaray FG, Wanke CH, Figueroa CA, Baumvol IJR, Aguzzoli C. Implantação Iônica de Baixa Energia de Íons de Prata em Titânio. Scientia Cum Industria 2 (2014;2:26-30. doi: 10.18226/23185279.v2iss1p26.
  25. Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753-89. doi: 10.1146/annurev.micro.50.1.753. PMID: 8905098.
  26. Bullmann M da S, Castro de VV, Coutinho DAK, Lopes FC, Maurmann N, Pereira MB, Rodrigues M, Pranke P, Ferraz MP, Lopes MK, Arenas LT, Malfatti de CF. Eucalyptus globulus essential oil thin film polymerized by cold plasma on Ti6Al4V: Sterilization effect, antibacterial activity, adhesion, and viability of mesenchymal stem cells. Plasma Processes and Polymers n/a (n.d.) 2023. doi: 10.1002/ppap.202300075.
  27. C.I. Kothe, R. Zilio, T.P.S. Zamboni, C. Aguzzoli, L.S. Casarin, E.C. Tondo, S. Desk, Silver implantation on AISI 304 stainless steel surface using low-energy doses and the antimicrobial effect against <em>Salmonella</em> Enteritidis and <em>Listeria monocytogenes</em>, Journal of Food Science & Technology 5 (2020). https://www.siftdesk.org/article-details/Silver-implantation-on-AISI-304-stainless-steel-surface-usi... (accessed February 6, 2024).
  28. Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial Biofilms in the Food Industry-A Comprehensive Review. Int J Environ Res Public Health. 2021 Feb 19;18(4):2014. doi: 10.3390/ijerph18042014. PMID: 33669645; PMCID: PMC7922197.
  29. Dancer SJ, Stewart M, Coulombe C, Gregori A, Virdi M. Surgical site infections linked to contaminated surgical instruments. J Hosp Infect. 2012 Aug;81(4):231-8. doi: 10.1016/j.jhin.2012.04.023. Epub 2012 Jun 15. PMID: 22704634.
  30. Di Lodovico S, Del Vecchio A, Cataldi V, Di Campli E, Di Bartolomeo S, Cellini L, Di Giulio M. Microbial Contamination of Smartphone Touchscreens of Italian University Students. Curr Microbiol. 2018 Mar;75(3):336-342. doi: 10.1007/s00284-017-1385-9. Epub 2017 Dec 15. PMID: 29247337.
  31. White J, Jewelry and artificial fingernails in the health care environment: Infection risk or urban legend?, Clinical Microbiology Newsletter. 2013;35:61-67. doi: 10.1016/j.clinmicnews.2013.03.003.
  32. C.D. Johnson, I. Taylor, Recent Advances in Surgery 30, CRC Press, 2007.
  33. Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. Int J Hyg Environ Health. 2016 Oct;219(7 Pt A):585-591. doi: 10.1016/j.ijheh.2016.06.003. Epub 2016 Jun 3. PMID: 27318723.
  34. Baldin EK, Castro de VV, Santos PB, Aguzzoli C, Bernardi F, Medeiros T, Maurmann N, Pranke P, Frassini R, Roesh ME, Longhitano GA, Munhoz ALJ, Andrade de AMH, Fraga Malfatti de C. Copper incorporation by low-energy ion implantation in PEO-coated additively manufactured Ti6Al4V ELI: Surface microstructure, cytotoxicity and antibacterial behavior. Journal of Alloys and Compounds. 2023;168735. doi: 10.1016/j.jallcom.2023.168735.
  35. Stoimenov PK, Klinge RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679-6686. doi: 10.1021/la0202374.
  36. Hans M, Erbe A, Mathews S, Chen Y, Solioz M, Mücklich F. Role of copper oxides in contact killing of bacteria. Langmuir. 2013 Dec 31;29(52):16160-6. doi: 10.1021/la404091z. Epub 2013 Dec 17. PMID: 24344971.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search