Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

Drug Design Strategies, Modes of Action, Synthesis and Industrial Challenges Behind Trifluoromethylated New Chemical Entities

Medicine Group    Start Submission

Leitao EPT* and Sobral LMS

Volume5-Issue2
Dates: Received: 2024-01-10 | Accepted: 2024-02-13 | Published: 2024-02-15
Pages: 159-213

Abstract

Medicinal plants have been an inspiration source for developing new chemical entities, providing diverse chemical structures and modes of action for medicinal chemistry strategies. Modern medicinal chemistry approaches promote functional group changes to improve NCE’s biological activity. Incorporating the trifluoromethyl (-CF3) group into organic compounds is crucial in modern drug design. It may affect the compound's lipophilicity, solubility, stability, molecular conformation, and pKa, changes that may lead to the discovery of new medicines to treat diseases of our times. For this reason, this chemical transformation is currently a hot topic in the organic chemistry field. Chemists are competing to develop better methods to carry out this transformation efficiently, less hazardously, and cost-effectively. The high number of annual scientific publications on trifluoromethylation evidences the competition. This review profiles 21 trifluoromethylated New Chemical Entities (NCE) selected in December 2020 from the GlobalData database, mainly in late stages of clinical trials (Phase II and III) or already in the commercial phase, containing one or two -CF3 groups in para or meta positions of benzene, or a pyridine ring. Synthetic approaches, therapeutic applications, and manufacturing industrial challenges are provided.

FullText HTML FullText PDF DOI: 10.37871/jbres1883


Certificate of Publication




Copyright

© 2024 Leitão EPT, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Leitao EPT, Sobral LMS. Drug Design Strategies, Modes of Action, Synthesis and Industrial Challenges Behind Trifl uoromethylated New Chemical Entities. J Biomed Res Environ Sci. 2024 Feb 15; 5(2): 159-213. doi: 10.37871/jbres1883, Article ID: JBRES1883, Available at: https://www.jelsciences.com/articles/jbres1883.pdf


Subject area(s)

References


  1. Fitzgerald M, Heinrich M, Booker A. Medicinal Plant Analysis: A Historical and Regional Discussion of Emergent Complex Techniques. Front Pharmacol. 2020 Jan 9;10:1480. doi: 10.3389/fphar.2019.01480. PMID: 31998121; PMCID: PMC6962180.
  2. Kelly K. History of medicine. Facts on file. New York; 2009.
  3. Mahidol C, Ruchirawat S, Prawat H, Pisutjaroenpong S, Engprasert S, Chumsri P, Tengchaisri T, Sirisinha S, Picha P. Biodiversity and natural product drug discovery. Pure Appl Chem. 1998;70(11):2065-2072. doi:10.1351/pac199870112065.
  4. Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003 Jun 15;110(5-6):255-8. doi: 10.1016/s0049-3848(03)00379-7. PMID: 14592543.
  5. Montinari MR, Minelli S, De Caterina R. The first 3500 years of aspirin history from its roots - A concise summary. Vascul Pharmacol. 2019 Feb;113:1-8. doi: 10.1016/j.vph.2018.10.008. Epub 2018 Nov 2. PMID: 30391545.
  6. Li J, Larregieu CA, Benet LZ. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chin J Nat Med. 2016 Dec;14(12):888-897. doi: 10.1016/S1875-5364(17)30013-4. PMID: 28262115.
  7. Sproll C, Perz RC, Lachenmeier DW. Optimized LC/MS/MS analysis of morphine and codeine in poppy seed and evaluation of their fate during food processing as a basis for risk analysis. J Agric Food Chem. 2006 Jul 26;54(15):5292-8. doi: 10.1021/jf0608975. PMID: 16848508.
  8. Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules. 2016 Apr 29;21(5):559. doi: 10.3390/molecules21050559. PMID: 27136524; PMCID: PMC6273146.
  9. Hoffmann JP. The historical shift in the perception of opiates: from medicine to social menace. J Psychoactive Drugs. 1990 Jan-Mar;22(1):53-62. doi: 10.1080/02791072.1990.10472197. PMID: 2182806.
  10. Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004 Dec;67(12):2141-53. doi: 10.1021/np040106y. Erratum in: J Nat Prod. 2006 Jan;69(1):172. PMID: 15620274.
  11. Bowery NG. Codeine. In: XPharm: The Comprehensive Pharmacology Reference. Elsevier. 2007:1-4. doi: 10.1016/B978-008055232-3.61504-1.
  12. Malm H, Borisch C. Analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), muscle relaxants, and antigout medications. In: Drugs During Pregnancy and Lactation. Elsevier. 2015:27-58. doi: 10.1016/B978-0-12-408078-2.00002-0.
  13. Wright C, XLIX. On the action of organic acids and their anhydrides on the natural alkaloids. Part I. J Chem Soc Trans. 1874;27:1031-1043.
  14. Mark TL, Woody GE, Juday T, Kleber HD. The economic costs of heroin addiction in the United States. Drug Alcohol Depend. 2001 Jan 1;61(2):195-206. doi: 10.1016/s0376-8716(00)00162-9. PMID: 11137285.
  15. Petersen RC. Cocaine: an overview. NIDA Res Monogr. 1977 May;Series 13:5-15. PMID: 408703.
  16. MacNeil SD, Rotenberg B, Sowerby L, Allen B, Richard L, Shariff SZ. Medical use of cocaine and perioperative morbidity following sinonasal surgery-A population study. PLoS One. 2020 Jul 30;15(7):e0236356. doi: 10.1371/journal.pone.0236356. PMID: 32730351; PMCID: PMC7392254.
  17. Reuter URM, Oettmeier R, Nazlikul H. Procaine and Procaine-Base-Infusion: A Review of the Safety and Fields of Application after Twenty Years of Use. Clin Res Open Access. 2018;4(1):1-7. doi: 10.16966/2469-6714.127.
  18. ADRIANI J, CAMPBELL D. Fatalities following topical application of local anesthetics to mucous membranes. J Am Med Assoc. 1956 Dec 22;162(17):1527-30. doi: 10.1001/jama.1956.02970340017006. PMID: 24544163.
  19. Gordh T. Lidocaine: the origin of a modern local anesthetic. 1949. Anesthesiology. 2010 Dec;113(6):1433-7. doi: 10.1097/ALN.0b013e3181fcef48. PMID: 21068652.
  20. Ben Amar M. Cannabinoids in medicine: A review of their therapeutic potential. J Ethnopharmacol. 2006 Apr 21;105(1-2):1-25. doi: 10.1016/j.jep.2006.02.001. Epub 2006 Mar 15. PMID: 16540272.
  21. Amar M Ben. Pharmacologie du cannabis et synthèse des analyses des principaux comités d ’ experts. 2009;2. doi:10.7202/008535ar.
  22. Bostwick JM. Blurred boundaries: the therapeutics and politics of medical marijuana. Mayo Clin Proc. 2012 Feb;87(2):172-86. doi: 10.1016/j.mayocp.2011.10.003. PMID: 22305029; PMCID: PMC3538401.
  23. Lotan I, Treves TA, Roditi Y, Djaldetti R. Cannabis (medical marijuana) treatment for motor and non-motor symptoms of Parkinson disease: an open-label observational study. Clin Neuropharmacol. 2014 Mar-Apr;37(2):41-4. doi: 10.1097/WNF.0000000000000016. PMID: 24614667.
  24. Abu-Sawwa R, Stehling C. Epidiolex (Cannabidiol) Primer: Frequently Asked Questions for Patients and Caregivers. J Pediatr Pharmacol Ther. 2020 Jan-Feb;25(1):75-77. doi: 10.5863/1551-6776-25.1.75. PMID: 31897080; PMCID: PMC6938286.
  25. Walsh V, Goodman J. From taxol to Taxol: the changing identities and ownership of an anti-cancer drug. Med Anthropol. 2002 Jul-Dec;21(3-4):307-36. doi: 10.1080/01459740214074. PMID: 12458837.
  26. Sarker SD, Nahar L, Miron A, Guo M. Anticancer natural products. Vol 55. 1st ed. Elsevier Inc. 2020. doi: 10.1016/bs.armc.2020.02.001.
  27. Gao Y, Jiang W, Dong C, Li C, Fu X, Min L, Tian J, Jin H, Shen J. Anti-inflammatory effects of sophocarpine in LPS-induced RAW 264.7 cells via NF-κB and MAPKs signaling pathways. Toxicol In Vitro. 2012 Feb;26(1):1-6. doi: 10.1016/j.tiv.2011.09.019. Epub 2011 Sep 29. PMID: 21978812.
  28. Zhang Y, Zhang H, Yu P, Liu Q, Liu K, Duan H, Luan G, Yagasaki K, Zhang G. Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology. 2009 Apr;59(3):191-200. doi: 10.1007/s10616-009-9211-2. Epub 2009 Aug 2. PMID: 19649719; PMCID: PMC2774570.
  29. Nainu F, Permana AD, Djide NJN, Anjani QK, Utami RN, Rumata NR, Zhang J, Emran TB, Simal-Gandara J. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics (Basel). 2021 Aug 14;10(8):981. doi: 10.3390/antibiotics10080981. PMID: 34439031; PMCID: PMC8388863.
  30. Mang R, Heilmayer W, Badegruber R, et al. US Patent 8,071,643 B2. 2011.
  31. Sun S, Fu J. Methyl-containing pharmaceuticals: Methylation in drug design. Bioorg Med Chem Lett. 2018 Nov 1;28(20):3283-3289. doi: 10.1016/j.bmcl.2018.09.016. Epub 2018 Sep 14. PMID: 30243589.
  32. Uslaner JM, Herring WJ, Coleman PJ. The Discovery of Suvorexant: Lessons Learned That Can Be Applied to Other CNS Drug Development Efforts. ACS Pharmacol Transl Sci. 2020 Jan 28;3(1):161-168. doi: 10.1021/acsptsci.9b00110. PMID: 32259095; PMCID: PMC7088936.
  33. Lin X, Li X, Lin X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules. 2020 Mar 18;25(6):1375. doi: 10.3390/molecules25061375. PMID: 32197324; PMCID: PMC7144386.
  34. Artamonov OS, Slobodyanyuk EY, Volochnyuk DM, Komarov I V, Tolmachev AA, Mykhailiuk PK. Synthesis of trifluoromethyl-substituted 3-azabicyclo[n.1.0]alkanes: Advanced building blocks for drug discovery. European J Org Chem. 2014;2014(17):3592-3598. doi: 10.1002/ejoc.201402158.
  35. https://cen.acs.org/content/cen/sections/drugs-approved-in-2020.html, accessed on 2021.02.01.
  36. Corcept Therapeutics. Corcept Therapeutics Initiates a Phase 1 Study of Its Lead Selective Cortisol Receptor (GR-II) Antagonist - CORT 108297. 23 févr 2010 09h05 HE.
  37. Nasdaq C. Corcept Therapeutics, Inc. History. 2010;5(5):4-6.
  38. Belanoff JK, Blasey CM, Clark RD, Roe RL. Selective glucocorticoid receptor (type II) antagonist prevents and reverses olanzapine-induced weight gain. Diabetes Obes Metab. 2010 Jun;12(6):545-7. doi: 10.1111/j.1463-1326.2009.01185.x. PMID: 20518810.
  39. https://adisinsight.springer.com/drugs/800028115, assessed on 26.04.2021.
  40. Andrade C, Shaikh SA, Narayan L, Blasey C, Belanoff J. Administration of a selective glucocorticoid antagonist attenuates electroconvulsive shock-induced retrograde amnesia. J Neural Transm (Vienna). 2012 Mar;119(3):337-44. doi: 10.1007/s00702-011-0712-8. Epub 2011 Sep 16. PMID: 21922193.
  41. Hunkin N. Focal retrograde amnesia following closed head injury: A case study and theoretical account. Neuropsychologia. 1995;33(4):509-523. doi: 10.1016/0028-3932(94)00136-D.
  42. Butts KA, Weinberg J, Young AH, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18459-64. doi: 10.1073/pnas.1111746108. Epub 2011 Oct 27. PMID: 22032926; PMCID: PMC3215005.
  43. Phillips AG, Vacca G, Ahn S. A top-down perspective on dopamine, motivation and memory. Pharmacol Biochem Behav. 2008 Aug;90(2):236-49. doi: 10.1016/j.pbb.2007.10.014. Epub 2007 Nov 28. PMID: 18045671.
  44. Butts KA, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area. Int J Neuropsychopharmacol. 2013 Sep;16(8):1799-807. doi: 10.1017/S1461145713000187. Epub 2013 Apr 16. PMID: 23590841.
  45. Zhou Y, Vourloumis D, Gregor VE, et al. PCT Int. Appl. WO 2005/028467 A1. 2005;(12).
  46. Christoffers J, Scharl H. Copper-catalyzed asymmetric Michael reactions with α-amino acid amides: Synthesis of an optically active piperidine derivative. European J Org Chem. 2002;(9):1505-1508. doi: 10.1002/1099-0690(200205)2002:9<1505::AID-EJOC1505>3.0.CO;2-K.
  47. Clark RD, Ray NC, Williams K, Blaney P, Ward S, Crackett PH, Hurley C, Dyke HJ, Clark DE, Lockey P, Devos R, Wong M, Porres SS, Bright CP, Jenkins RE, Belanoff J. 1H-Pyrazolo[3,4-g]hexahydro-isoquinolines as selective glucocorticoid receptor antagonists with high functional activity. Bioorg Med Chem Lett. 2008 Feb 15;18(4):1312-7. doi: 10.1016/j.bmcl.2008.01.027. Epub 2008 Jan 11. PMID: 18226897.
  48. Thomson TA, Spinella-Jaegle S, Francesconi E, Meakin C, Millet S, Flao KL, Hidden H, Ruuth E. In vitro and in Vivo inhibition of immunoglobulin secretion by the immunosuppressive compound HR325 is reversed by exogenous uridine. Scand J Immunol. 2002 Jul;56(1):35-42. doi: 10.1046/j.1365-3083.2002.01107.x. PMID: 12100469.
  49. Uehara Y, Hirawa N, Kawabata Y, Akie Y, Ichikawa A, Funahashi N, Omata M. Immunosuppressant HR-325 attenuates progression of malignant arteritis in the kidney of Dahl salt-sensitive rats. Hypertens Res. 1997 Jun;20(2):91-7. doi: 10.1291/hypres.20.91. PMID: 9220272.
  50. Munier-Lehmann H, Vidalain PO, Tangy F, Janin YL. On dihydroorotate dehydrogenases and their inhibitors and uses. J Med Chem. 2013 Apr 25;56(8):3148-67. doi: 10.1021/jm301848w. Epub 2013 Mar 20. PMID: 23452331.
  51. Kuo EA, Hambleton PT, Kay DP, Evans PL, Matharu SS, Little E, McDowall N, Jones CB, Hedgecock CJ, Yea CM, Chan AW, Hairsine PW, Ager IR, Tully WR, Williamson RA, Westwood R. Synthesis, structure-activity relationships, and pharmacokinetic properties of dihydroorotate dehydrogenase inhibitors: 2-cyano-3-cyclopropyl-3-hydroxy-N-[3'-methyl-4'-(trifluoromethyl)phenyl ] propenamide and related compounds. J Med Chem. 1996 Nov 8;39(23):4608-21. doi: 10.1021/jm9604437. PMID: 8917650.
  52. Abdel-Magid AF. Use of Dihydroorotate Dehydrogenase Inhibitors for Treatment of Autoimmune Diseases and Cancer. ACS Med Chem Lett. 2020 Sep 4;11(11):2072-2074. doi: 10.1021/acsmedchemlett.0c00466. PMID: 33214811; PMCID: PMC7667645.
  53. AP-325 in Subjects With Peripheral Post-Surgical Neuropathic Pain. Identifier NCT04429919. National Library of Medicine. US. 2020.
  54. Kuo EA, Hambleton PT, Kay DP, et al. Synthesis, Structure−Activity Relationships, and Pharmacokinetic Properties of Dihydroorotate Dehydrogenase Inhibitors: 2-Cyano-3-cyclopropyl-3-hydroxy- N -[3‘-methyl-4‘-(trifluoromethyl)phenyl]propenamide and Related Compounds. J Med Chem. 1996;39(23):4608-4621. doi: 10.1021/jm9604437.
  55. Zhang R, Wang A, DeAngelis A, Pelton P, Xu J, Zhu P, Zhou L, Demarest K, Murray WV, Kuo GH. Discovery of para-alkylthiophenoxyacetic acids as a novel series of potent and selective PPARdelta agonists. Bioorg Med Chem Lett. 2007 Jul 15;17(14):3855-9. doi: 10.1016/j.bmcl.2007.05.007. Epub 2007 May 10. PMID: 17524639.
  56. Seladelpar (MBX-8025) in Subjects With Primary Biliary Cholangitis (PBC). Identifier NCT02955602. National Library of Medicine (US). (2016, November – 2019, September).
  57. Jones D, Boudes PF, Swain MG, Bowlus CL, Galambos MR, Bacon BR, Doerffel Y, Gitlin N, Gordon SC, Odin JA, Sheridan D, Wörns MA, Clark V, Corless L, Hartmann H, Jonas ME, Kremer AE, Mells GF, Buggisch P, Freilich BL, Levy C, Vierling JM, Bernstein DE, Hartleb M, Janczewska E, Rochling F, Shah H, Shiffman ML, Smith JH, Choi YJ, Steinberg A, Varga M, Chera H, Martin R, McWherter CA, Hirschfield GM. Seladelpar (MBX-8025), a selective PPAR-δ agonist, in patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid: a double-blind, randomised, placebo-controlled, phase 2, proof-of-concept study. Lancet Gastroenterol Hepatol. 2017 Oct;2(10):716-726. doi: 10.1016/S2468-1253(17)30246-7. Epub 2017 Aug 14. PMID: 28818518.
  58. Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary Biliary Cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology. 2019 Jan;69(1):394-419. doi: 10.1002/hep.30145. Epub 2018 Nov 6. PMID: 30070375.
  59. Gerussi A, Lucà M, Cristoferi L, Ronca V, Mancuso C, Milani C, D'Amato D, O'Donnell SE, Carbone M, Invernizzi P. New Therapeutic Targets in Autoimmune Cholangiopathies. Front Med (Lausanne). 2020 Apr 7;7:117. doi: 10.3389/fmed.2020.00117. PMID: 32318580; PMCID: PMC7154090.
  60. Lleo A, Maroni L, Glaser S, Alpini G, Marzioni M. Role of cholangiocytes in primary biliary cirrhosis. Semin Liver Dis. 2014;34(3):273-284. doi: 10.1055/s-0034-1383727.
  61. Wong VWS, Singal AK. Emerging medical therapies for non-alcoholic fatty liver disease and for alcoholic hepatitis. Transl Gastroenterol Hepatol. 2019;4(July). doi: 10.21037/tgh.2019.06.06.
  62. Bahar R, Wong KA, Liu CH, Bowlus CL. Update on New Drugs and Those in Development for the Treatment of Primary Biliary Cholangitis. Gastroenterol Hepatol (N Y). 2018 Mar;14(3):154-163. PMID: 29928160; PMCID: PMC6004046.
  63. Kuo GH, Zhang R, Wang A, Deangelis AR. PCT Int. Appl. WO2005042478A2. 2005:146.
  64. Deangelis A, Demarest KT, Kuo GH, Pelton P, Wang A, Zhang R. PCT Int. Appl. WO2006032023 A2. 2006:91.
  65. Jennbacken K, Welén K, Olsson A, Axelsson B, Törngren M, Damber JE, Leanderson T. Inhibition of metastasis in a castration resistant prostate cancer model by the quinoline-3-carboxamide tasquinimod (ABR-215050). Prostate. 2012 Jun 1;72(8):913-24. doi: 10.1002/pros.21495. Epub 2011 Oct 5. PMID: 22287276.
  66. Olsson A, Björk A, Vallon-Christersson J, Isaacs JT, Leanderson T. Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol Cancer. 2010 May 17;9:107. doi: 10.1186/1476-4598-9-107. PMID: 20470445; PMCID: PMC2885345.
  67. Bratt O, Häggman M, Ahlgren G, Nordle O, Björk A, Damber JE. Open-label, clinical phase I studies of tasquinimod in patients with castration-resistant prostate cancer. Br J Cancer. 2009 Oct 20;101(8):1233-40. doi: 10.1038/sj.bjc.6605322. Epub 2009 Sep 15. PMID: 19755981; PMCID: PMC2768463.
  68. Active biotech and Ipsen enter into a broad partnership for the co-development and commercialization of TASQ in uro-oncology. Chief Exec. Active Biotech. 2011:4-7.
  69. Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Hammers H, Wissing M, Kachhap S, Luo J, Xing L, Björk P, Olsson A, Björk A, Leanderson T. Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 2013 Feb 15;73(4):1386-99. doi: 10.1158/0008-5472.CAN-12-2730. Epub 2012 Nov 13. PMID: 23149916; PMCID: PMC3578133.
  70. Raymond E, Dalgleish A, Damber JE, Smith M, Pili R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol. 2014 Jan;73(1):1-8. doi: 10.1007/s00280-013-2321-8. Epub 2013 Oct 27. PMID: 24162378; PMCID: PMC3889691.
  71. Vogl DT, Nefedova Y, Wileyto EP, Sembhi H, Strakovsky I, Nguyen C, Taneja R, Bondesson E, Eriksson H, Tuvesson H. A Phase 1 Study of Tasquinimod in Patients with Relapsed or Refractory Multiple Myeloma. Blood. 2020;136(Suplement 1):17.
  72. Jönsson S, Andersson G, Fex T, Fristedt T, Hedlund G, Jansson K, Abramo L, Fritzson I, Pekarski O, Runström A, Sandin H, Thuvesson I, Björk A. Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem. 2004 Apr 8;47(8):2075-88. doi: 10.1021/jm031044w. PMID: 15056005.
  73. Bock LM, HOLMBERG PH, Jansson KE. PCT Pat. Appl. WO2012004338 A1. 2012:25.
  74. Wang GT, Mantei RA, Kawai M, Tedrow JS, Barnes DM, Wang J, Zhang Q, Lou P, Garcia LA, Bouska J, Yates M, Park C, Judge RA, Lesniewski R, Sheppard GS, Bell RL. Lead optimization of methionine aminopeptidase-2 (MetAP2) inhibitors containing sulfonamides of 5,6-disubstituted anthranilic acids. Bioorg Med Chem Lett. 2007 May 15;17(10):2817-22. doi: 10.1016/j.bmcl.2007.02.062. Epub 2007 Feb 25. PMID: 17350258.
  75. Morgentin R, Barlaam B, Foote K, et al. Two-Directional Approach for the Rapid Synthesis of 2,4-Bis-Aminoaryl Pyridine Derivatives. Synth Commun. 2012;42(1):8-24. doi: 10.1080/00397911.2010.520403.
  76. Chai D, Colon M, Duffy, Kevin J, Fitch, Duke M, Tedesto R, Zimmerman MN. PCT Int. Appl. WO 2007038571 A2. 2007.
  77. Crew, Andrew P, Dong H, Ferraro C, Sherman D, Siu KW. PCT Int. Appl. WO2012074951 A1. 2012;11735(12).
  78. Suzuki M, Kondo K, Kurimura M, et al. PCT Int. Appl. WO2013003586. 2013;00(12).
  79. Chen X, Jia H, Li Z, Xu X. Synthesis and nematicidal evaluation of 1,2,3-benzotriazin-4-one derivatives containing piperazine as linker against Meloidogyne incognita. Chinese Chem Lett. 2019;30(6):1207-1213. doi: 10.1016/j.cclet.2019.02.033.
  80. Luo H, Sheng C, Lai Z, Chen J. PCT Int. Appl. WO2018188446 A 1.; 2018.
  81. Mehta B, Gohil Y. Development and validation of stability indicating rp-hplc method for estimation of teriflunomide in active pharmaceutical ingredient development and validation of stability indicating rp-hplc method for estimation of teriflunomide in active pharmaceutica. Pharma Innov J. 2017;6(9):440-449.
  82. Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs. 2014 Apr;74(6):659-74. doi: 10.1007/s40265-014-0212-x. PMID: 24740824; PMCID: PMC4003395.
  83. Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015 Sep;5(9):e00362. doi: 10.1002/brb3.362. Epub 2015 Aug 3. PMID: 26445701; PMCID: PMC4589809.
  84. Paik J. Teriflunomide: Pediatric First Approval. Paediatr Drugs. 2021 Nov;23(6):609-613. doi: 10.1007/s40272-021-00471-1. PMID: 34595696.
  85. Fragoso YD, Brooks JB. Leflunomide and teriflunomide: altering the metabolism of pyrimidines for the treatment of autoimmune diseases. Expert Rev Clin Pharmacol. 2015 May;8(3):315-20. doi: 10.1586/17512433.2015.1019343. Epub 2015 Feb 24. PMID: 25712857.
  86. Bartlett RR, Kammerer FJ. U.S. Patent 5494911. 1996;(19).
  87. Morris RE, Bartlett RR. U.S. Patent 5519042. New York. 1996;1(19):1-29.
  88. Rajan ST, Eswaraiah S. PCT Int. Appl. WO 2015029063 A2. 2015;(12).
  89. Palle RV, Bhat, Shanmughasamy R, Babu JR, Shanmughasamy R. PCT Int. Appl. WO2016203410 A1. 2016;(12).
  90. Hirth KP, Schwartz DP, Mann E, et al. U.S. Patent 5990141. 1999;222(19):213-222.
  91. Subramaniam P, Ramasubbu C, Athiramu S. Exploiting intramolecular hydrogen bonding for the highly (z)-selective &amp; metal free synthesis of amide substituted β-aminoenones. Green Chem. 2017;19(11):2541-2545. doi: 10.1039/C7GC00909G.
  92. Mahajan S, Ghosh S, Sudbeck EA, Zheng Y, Downs S, Hupke M, Uckun FM. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem. 1999 Apr 2;274(14):9587-99. doi: 10.1074/jbc.274.14.9587. PMID: 10092645.
  93. Uckun FM, Zheng Y, Ghosh S. U.S. Patent 6355678 B1. 2002;1(12).
  94. Hachtel J, Neises B, Schwab W, Utz R, Zahn M. U.S. Patent 20040186173 A1. 2004;1(19).
  95. Keshav D, Samir P, Snehal D, Sunil S, Vishal R. PCT Int. Appl. WO 2010013159 A1. 2010;390003(390003).
  96. Chen G, Sun L. PCT Int. Appl. WO 2009147624 A2. Faming Zhuanli Shenqing. 2012;2009(CN102786437A):6pp.
  97. Chen X, Liu B, Ma Y, Yuan J. C.N. Patent 103848756. Published online 2014.
  98. Li G, Liu B, Ma Y, Yuan J. C.N. Patent 104693070. Published online 2015.
  99. Klibanov OM. Vicriviroc, a CCR5 receptor antagonist for the potential treatment of HIV infection. Curr Opin Investig Drugs. 2009 Aug;10(8):845-59. PMID: 19649929.
  100. Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W, Hipkin RW, Chou CC, Pugliese-Sivo C, Xiao Y, Tagat JR, Cox K, Priestley T, Sorota S, Huang W, Hirsch M, Reyes GR, Baroudy BM. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2005 Dec;49(12):4911-9. doi: 10.1128/AAC.49.12.4911-4919.2005. PMID: 16304152; PMCID: PMC1315929.
  101. Alcorn K. Merck stops development of CCR5 inhibitor vicriviroc/ aidsmap. 2021:3-5.
  102. Kasserra C, O'Mara E. Pharmacokinetic interaction of vicriviroc with other antiretroviral agents: results from a series of fixed-sequence and parallel-group clinical trials. Clin Pharmacokinet. 2011 Apr;50(4):267-80. doi: 10.2165/11584560-000000000-00000. PMID: 21348539.
  103. Kasserra C, Li J, March B, O'Mara E. Effect of vicriviroc with or without ritonavir on oral contraceptive pharmacokinetics: a randomized, open-label, parallel-group, fixed-sequence crossover trial in healthy women. Clin Ther. 2011 Oct;33(10):1503-14. doi: 10.1016/j.clinthera.2011.08.012. Epub 2011 Oct 19. PMID: 22015327.
  104. Phase 1 Pharmacokinetic Trial of Two Intravaginal Rings (IVRs) Containing Different Dose Strengths of Vicriviroc (MK-4176) and MK-2048. Identifier: NCT02419456.National Library of Medicine (US). 2016.
  105. Phase 1 Safety and Pharmacokinetics Study of MK-2048/Vicriviroc (MK-4176)/MK-2048A Intravaginal Rings. Identifier: NCT02356302. National Library of Medicine (US). 2016.
  106. A Phase 2 Trial to Evaluate the Safety and Efficacy of Vicriviroc (MK-7690) in Combination With Pembrolizumab (MK-3475) in Participants With Advanced/Metastatic Microsatellite Stable (MSS). National Library of Medicine (US). 2021.
  107. Leong W, Chen M, D’Sa BA, et al. PCT Int. Appl. WO2003084950 A1. Published online 2003.
  108. Tagat JR, McCombie SW, Nazareno D, Labroli MA, Xiao Y, Steensma RW, Strizki JM, Baroudy BM, Cox K, Lachowicz J, Varty G, Watkins R. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]- 4-[4-[2-methoxy-1(R)-4-(trifluoromethyl)phenyl]ethyl-3(S)-methyl-1-piperazinyl]- 4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem. 2004 May 6;47(10):2405-8. doi: 10.1021/jm0304515. PMID: 15115380.
  109. Ramanathan R, Ghosal A, Miller MW, Chowdhury SK, Alton KB. U.S. Patent 20060105964 A1. 2006;1(19).
  110. Feng DZ, Song YL, Jiang XH, Chen L, Long YQ. Forward- and reverse-synthesis of piperazinopiperidine amide analogs: a general access to structurally diverse 4-piperazinopiperidine-based ccr5 antagonists. Org Biomol Chem. 2007;5(16):2690. doi:10.1039/b707175b.
  111. Zhao L, Yuan X, Wang J, Feng Y, Ji F, Li Z, Bian J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg Med Chem. 2019 Mar 1;27(5):677-685. doi: 10.1016/j.bmc.2019.01.027. Epub 2019 Jan 26. PMID: 30733087.
  112. Tolcher AW, Peng W, Calvo E. Rational Approaches for Combination Therapy Strategies Targeting the MAP Kinase Pathway in Solid Tumors. Mol Cancer Ther. 2018 Jan;17(1):3-16. doi: 10.1158/1535-7163.MCT-17-0349. PMID: 29295962.
  113. Gupta P, Zhang YK, Zhang XY, Wang YJ, Lu KW, Hall T, Peng R, Yang DH, Xie N, Chen ZS. Voruciclib, a Potent CDK4/6 Inhibitor, Antagonizes ABCB1 and ABCG2-Mediated Multi-Drug Resistance in Cancer Cells. Cell Physiol Biochem. 2018;45(4):1515-1528. doi: 10.1159/000487578. Epub 2018 Feb 19. PMID: 29486476.
  114. Sarkozy C, Sehn LH. New drugs for the management of relapsed or refractory diffuse large B-cell lymphoma. Ann Lymphoma. 2019;3:10-10. doi: 10.21037/aol.2019.09.01.
  115. Dey J, Deckwerth TL, Kerwin WS, Casalini JR, Merrell AJ, Grenley MO, Burns C, Ditzler SH, Dixon CP, Beirne E, Gillespie KC, Kleinman EF, Klinghoffer RA. Voruciclib, a clinical stage oral CDK9 inhibitor, represses MCL-1 and sensitizes high-risk Diffuse Large B-cell Lymphoma to BCL2 inhibition. Sci Rep. 2017 Dec 21;7(1):18007. doi: 10.1038/s41598-017-18368-w. PMID: 29269870; PMCID: PMC5740070.
  116. Billard C. BH3 mimetics: status of the field and new developments. Mol Cancer Ther. 2013 Sep;12(9):1691-700. doi: 10.1158/1535-7163.MCT-13-0058. Epub 2013 Aug 23. PMID: 23974697.
  117. Sivakumar M, Mascarenhas M, Sarde A, et al. PCT Int. Appl. WO2007148158 A1. 2010.
  118. Rathos MJ, Joshi KS. PCT Int. Appl. WO2012066508 A1. 2012;(12).
  119. Stevens T, Ekholm K, Gränse M, Lindahl M, Kozma V, Jungar C, Ottosson T, Falk-Håkansson H, Churg A, Wright JL, Lal H, Sanfridson A. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J Pharmacol Exp Ther. 2011 Oct;339(1):313-20. doi: 10.1124/jpet.111.182139. Epub 2011 Jul 26. PMID: 21791628.
  120. Mereo BioPharma. Trinity Delta. Outlook 31 January 2019.
  121. Lo Bello F, Hansbro PM, Donovan C, Coppolino I, Mumby S, Adcock IM, Caramori G. New drugs under development for COPD. Expert Opin Emerg Drugs. 2020 Dec;25(4):419-431. doi: 10.1080/14728214.2020.1819982. Epub 2020 Sep 29. PMID: 32882146.
  122. Taylor EB. Casting a wide NET: an update on uncontrolled NETosis in response to COVID-19 infection. Clin Sci (Lond). 2022 Jul 15;136(13):1047-1052. doi: 10.1042/CS20220039. PMID: 35791847; PMCID: PMC9264284.
  123. Andersson M, Hansen P, Lonn H, Nikitidis A, Sjolin P. PCT Int. Appl. WO2005026123 A1. Published online 2005:101.
  124. Alcaraz ML, Briggner LE, Klingstedt PT, et al. PCT Int. Appl. WO 2010/094964 A1. 2010;(12).
  125. Srinath R, Dobs A. Enobosarm (GTx-024, S-22): a potential treatment for cachexia. Future Oncol. 2014 Feb;10(2):187-94. doi: 10.2217/fon.13.273. PMID: 24490605.
  126. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011 Sep;2(3):153-161. doi: 10.1007/s13539-011-0034-6. Epub 2011 Aug 2. PMID: 22031847; PMCID: PMC3177038.
  127. Bohl CE, Chang C, Mohler ML, Chen J, Miller DD, Swaan PW, Dalton JT. A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor. J Med Chem. 2004 Jul 15;47(15):3765-76. doi: 10.1021/jm0499007. PMID: 15239655; PMCID: PMC2080780.
  128. Chen J, Hwang DJ, Chung K, Bohl CE, Fisher SJ, Miller DD, Dalton JT. In vitro and in vivo structure-activity relationships of novel androgen receptor ligands with multiple substituents in the B-ring. Endocrinology. 2005 Dec;146(12):5444-54. doi: 10.1210/en.2005-0732. Epub 2005 Sep 15. PMID: 16166218; PMCID: PMC2121105.
  129. Kim J, Wu D, Hwang DJ, Miller DD, Dalton JT. The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators. J Pharmacol Exp Ther. 2005 Oct;315(1):230-9. doi: 10.1124/jpet.105.088344. Epub 2005 Jun 29. PMID: 15987833.
  130. Gao W, Kim J, Dalton JT. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm Res. 2006 Aug;23(8):1641-58. doi: 10.1007/s11095-006-9024-3. PMID: 16841196; PMCID: PMC2072875.
  131. Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y, Hwang DJ, Dalton JT, Miller DD. Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem. 2009 Jun 25;52(12):3597-617. doi: 10.1021/jm900280m. PMID: 19432422.
  132. Crawford J, Prado CM, Johnston MA, Gralla RJ, Taylor RP, Hancock ML, Dalton JT. Study Design and Rationale for the Phase 3 Clinical Development Program of Enobosarm, a Selective Androgen Receptor Modulator, for the Prevention and Treatment of Muscle Wasting in Cancer Patients (POWER Trials). Curr Oncol Rep. 2016 Jun;18(6):37. doi: 10.1007/s11912-016-0522-0. PMID: 27138015; PMCID: PMC4853438.
  133. Dubois V, Simitsidellis I, Laurent MR, Jardi F, Saunders PT, Vanderschueren D, Claessens F. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology. 2015 Dec;156(12):4522-33. doi: 10.1210/en.2015-1479. Epub 2015 Sep 22. PMID: 26393303.
  134. Leciejewska N, Pruszynska-Oszmalek E, Bien J, Nogowski L, Kolodziejski PA. Effect of ostarine (enobosarm/GTX024), a selective androgen receptor modulator, on adipocyte metabolism in Wistar rats. J Physiol Pharmacol. 2019 Aug;70(4). doi: 10.26402/jpp.2019.4.04. Epub 2019 Oct 19. PMID: 31642815.
  135. Aoyagi T, Terracina KP, Raza A, Matsubara H, Takabe K. Cancer cachexia, mechanism and treatment. World J Gastrointest Oncol. 2015 Apr 15;7(4):17-29. doi: 10.4251/wjgo.v7.i4.17. PMID: 25897346; PMCID: PMC4398892.
  136. Jones A, Coss CC, Steiner MS, Dalton JT. An overview on selective androgen receptor modulators: Focus on enobosarm. Drugs Future. 2013;38(5):309. doi: 10.1358/dof.2013.038.05.1970866.
  137. Bassetto M, Ferla S, Pertusati F, Kandil S, Westwell AD, Brancale A, McGuigan C. Design and synthesis of novel bicalutamide and enzalutamide derivatives as antiproliferative agents for the treatment of prostate cancer. Eur J Med Chem. 2016 Aug 8;118:230-43. doi: 10.1016/j.ejmech.2016.04.052. Epub 2016 Apr 22. PMID: 27131065.
  138. Dart DA, Kandil S, Tommasini-Ghelfi S, Serrano de Almeida G, Bevan CL, Jiang W, Westwell AD. Novel Trifluoromethylated Enobosarm Analogues with Potent Antiandrogenic Activity In Vitro and Tissue Selectivity In Vivo. Mol Cancer Ther. 2018 Sep;17(9):1846-1858. doi: 10.1158/1535-7163.MCT-18-0037. Epub 2018 Jun 12. PMID: 29895558.
  139. Dalton JT, Miller DD. U.S. Patent 2007123563 A1. Published online 2007.
  140. Narayanan R, Ponnusamy T. PCT Int. Appl. WO 2020/028593 A1. 2019;167(51).
  141. Schragl KM, Forsdahl G, Gmeiner G, Enev VS, Gaertner P. Novel pathway for the synthesis of arylpropionamide-derived selective androgen receptor modulator (sarm) metabolites of andarine and ostarine. Tetrahedron Lett. 2013;54(18):2239-2242. doi: 10.1016/j.tetlet.2013.02.065.
  142. https://adisinsight.springer.com/drugs/800034692. Accessed on 25.05.2021.
  143. Katchen B, Buxbaum S. Disposition of a new, nonsteroid, antiandrogen, alpha,alpha,alpha-trifluoro-2-methyl-4'-nitro-m-propionotoluidide (Flutamide), in men following a single oral 200 mg dose. J Clin Endocrinol Metab. 1975 Aug;41(2):373-9. doi: 10.1210/jcem-41-2-373. PMID: 1159048.
  144. Klotz L, Grudén S, Axén N, Gauffin C, Wassberg C, Bjartell A, Giddens J, Incze P, Jansz K, Jievaltas M, Rendon R, Richard PO, Ulys A, Tammela TL. Liproca Depot: A New Antiandrogen Treatment for Active Surveillance Patients. Eur Urol Focus. 2022 Jan;8(1):112-120. doi: 10.1016/j.euf.2021.02.003. Epub 2021 Feb 12. PMID: 33583762.
  145. Górowska-Wójtowicz E, Hejmej A, Kamińska A, Pardyak L, Kotula-Balak M, Dulińska-Litewka J, Laidler P, Bilińska B. Anti-androgen 2-hydroxyflutamide modulates cadherin, catenin and androgen receptor phosphorylation in androgen-sensitive LNCaP and androgen-independent PC3 prostate cancer cell lines acting via PI3K/Akt and MAPK/ERK1/2 pathways. Toxicol In Vitro. 2017 Apr;40:324-335. doi: 10.1016/j.tiv.2017.01.019. Epub 2017 Feb 2. PMID: 28163245.
  146. Conacci-Sorrell M, Zhurinsky J, Ben-Ze'ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest. 2002 Apr;109(8):987-91. doi: 10.1172/JCI15429. PMID: 11956233; PMCID: PMC150951.
  147. Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of Cadherins in Cancer-A Review. Int J Mol Sci. 2020 Oct 15;21(20):7624. doi: 10.3390/ijms21207624. PMID: 33076339; PMCID: PMC7589192.
  148. Bal’on YG, Simurov A V. Synthesis and antiandrogenic activity of 2-hydroxy-2-methylpropionic acid N-[4-nitro-3-(trifluoromethyl)phenyl]amide and its O-acyl derivatives. Zhurnal Org ta Farmatsevtichnoi Khimii. 2009;7(4):60-63.
  149. Jiang C. C.N. Patent 106946650. Published online 2017.
  150. BeiGene and SpringWorks Announce Presentation of Preclinical Data Combining RAF Dimer Inhibitor Lifirafenib with MEK Inhibitor Mirdametinib and Provide Update on Ongoing Phase 1b / 2 Clinical Trial. Source: SpringWorks Therapeuticcs, Inc. June 22, 2020.
  151. Desai J, Gan H, Barrow C, Jameson M, Atkinson V, Haydon A, Millward M, Begbie S, Brown M, Markman B, Patterson W, Hill A, Horvath L, Nagrial A, Richardson G, Jackson C, Friedlander M, Parente P, Tran B, Wang L, Chen Y, Tang Z, Huang W, Wu J, Zeng D, Luo L, Solomon B. Phase I, Open-Label, Dose-Escalation/Dose-Expansion Study of Lifirafenib (BGB-283), an RAF Family Kinase Inhibitor, in Patients With Solid Tumors. J Clin Oncol. 2020 Jul 1;38(19):2140-2150. doi: 10.1200/JCO.19.02654. Epub 2020 Mar 17. PMID: 32182156; PMCID: PMC7325368.
  152. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012 Jan;16(1):103-19. doi: 10.1517/14728222.2011.645805. Epub 2012 Jan 12. PMID: 22239440; PMCID: PMC3457779.
  153. Khazak V, Astsaturov I, Serebriiskii IG, Golemis EA. Selective Raf inhibition in cancer therapy. Expert Opin Ther Targets. 2007 Dec;11(12):1587-609. doi: 10.1517/14728222.11.12.1587. Erratum in: Expert Opin Ther Targets. 2009 Sep;13(9):1135. PMID: 18020980; PMCID: PMC2720036.
  154. Li ZN, Zhao L, Yu LF, Wei MJ. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol Rep (Oxf). 2020 Jun 15;8(3):192-205. doi: 10.1093/gastro/goaa022. PMID: 32665851; PMCID: PMC7333923.
  155. Brose MS, Volpe P, Feldman M. Braf and ras mutations in human lung cancer and melanoma. 2003.
  156. Tang Z, Yuan X, Du R, Cheung SH, Zhang G, Wei J, Zhao Y, Feng Y, Peng H, Zhang Y, Du Y, Hu X, Gong W, Liu Y, Gao Y, Liu Y, Hao R, Li S, Wang S, Ji J, Zhang L, Li S, Sutton D, Wei M, Zhou C, Wang L, Luo L. BGB-283, a Novel RAF Kinase and EGFR Inhibitor, Displays Potent Antitumor Activity in BRAF-Mutated Colorectal Cancers. Mol Cancer Ther. 2015 Oct;14(10):2187-97. doi: 10.1158/1535-7163.MCT-15-0262. Epub 2015 Jul 24. PMID: 26208524.
  157. Bethune G, Bethune D, Ridgway N, Xu Z. Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis. 2010 Mar;2(1):48-51. PMID: 22263017; PMCID: PMC3256436.
  158. Yuan X, Tang Z, Du R, Yao Z, Cheung SH, Zhang X, Wei J, Zhao Y, Du Y, Liu Y, Hu X, Gong W, Liu Y, Gao Y, Huang Z, Cao Z, Wei M, Zhou C, Wang L, Rosen N, Smith PD, Luo L. RAF dimer inhibition enhances the antitumor activity of MEK inhibitors in K-RAS mutant tumors. Mol Oncol. 2020 Aug;14(8):1833-1849. doi: 10.1002/1878-0261.12698. Epub 2020 May 18. PMID: 32336014; PMCID: PMC7400788.
  159. Zhang G, Zhou C. PCT Int. Appl. WO20165626 A1. 2016;3(12).
  160. Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R, Ulloor J, Zhang A, Eder R, Zientek H, Gordon G, Kazmi S, Sheffield-Moore M, Bhasin S. The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci. 2013 Jan;68(1):87-95. doi: 10.1093/gerona/gls078. Epub 2012 Mar 28. PMID: 22459616; PMCID: PMC4111291.
  161. Fonseca GWP Da, Dworatzek E, Ebner N, Von Haehling S. Selective Androgen Receptor Modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin Investig Drugs. 2020;29(8):881-891. doi: 10.1080/13543784.2020.1777275.
  162. Vajda EG, Hogue A, Griffiths KN, Chang WY, Burnett K, Chen Y, Marschke K, Mais DE, Pedram B, Shen Y, van Oeveren A, Zhi L, López FJ, Meglasson MD. Combination treatment with a selective androgen receptor modulator q(SARM) and a bisphosphonate has additive effects in osteopenic female rats. J Bone Miner Res. 2009 Feb;24(2):231-40. doi: 10.1359/jbmr.081007. PMID: 18847323.
  163. Kirk B, Al Saedi A, Duque G. Osteosarcopenia: A case of geroscience. AGING Med. 2019;2(3):147-156. doi: 10.1002/agm2.12080.
  164. Barbara M, Dhingra S, Mindikoglu AL. Ligandrol (LGD-4033)-Induced Liver Injury. ACG Case Reports J. 2020;7(6):e00370. doi: 10.14309/crj.0000000000000370.
  165. Roch PJ, Henkies D, Carstens JC, Krischek C, Lehmann W, Komrakova M, Sehmisch S. Ostarine and Ligandrol Improve Muscle Tissue in an Ovariectomized Rat Model. Front Endocrinol (Lausanne). 2020 Sep 17;11:556581. doi: 10.3389/fendo.2020.556581. PMID: 33042018; PMCID: PMC7528560.
  166. Grill M, Patt M, Odermatt A. Novel Protective Group Synthesis of Androgen Receptor Modulators with Steroidal and Nonsteroidal Scaffolds. 2019. doi: 10.26434/chemrxiv.11346962.
  167. Hopkins BT, Conlon P, Chan TR, et al. PCT Int. App. WO2013185084 A1. 2013;02493.
  168. Neuman LL, Ward R, Arnold D, Combs DL, Gruver D, Hill W, Kunjom JM, Miller LL, Fox JA. First-in-Human Phase 1a Study of the Safety, Pharmacokinetics, and Pharmacodynamics of the Noncovalent Bruton Tyrosine Kinase (BTK) Inhibitor SNS-062 in Healthy Subjects. Blood. 2016;128(22):2032-2032. doi: 10.1182/blood.V128.22.2032.2032.
  169. Jebaraj BMC, Scheffold A, Tausch E, Fox JA, Taverna P, Stilgenbauer S. Vecabrutinib is efficacious in vivo in a preclinical call adoptive transfer model. Blood. 2018;132(Supplement 1):1868-1868. doi: 10.1182/blood-2018-99-116664.
  170. Allan JN, Patel K, Mato AR, et al. PS1148 Preliminary results of a phase 1B/2 dose escalation and cohort-expansion study of the noncovalent, reversible Bruton’S Tyrosine Kinase Inhibitor (BTKI), Vecabrutinib, in B-CELL malignancies. 24th Congress of the European Hematology Association. Hem. 2019;3:S1.
  171. Sunesis Pharmaceuticals Announces Clinical Update on Vecabrutinib Program - Company Shifting Resources from Vecabrutinib to Development of PDK-1 Inhibitor SNS-510. 2020.
  172. Macphee JM, Neuman LL. PCT Int. Appl. WO2018017153 A1. 2017;(12).
  173. Antengene announces expansion of partnership with karyopharm in Asia Pacific Markets. Antengene Corporation. 2020.
  174. Etchin J, Berezovskaya A, Conway AS, et al. KPT-8602, a second-generation inhibitor of XPO1-mediated nuclear export, is well tolerated and highly active against AML blasts and leukemia-initiating cells. Leukemia. 2017;31(1):143-150. doi: 10.1038/leu.2016.145.
  175. Baloglu E, Shacham S, Mccauley D, et al. PCT Int. Appl. WO2014205393 A1. 2014;(12).
  176. Baloglu E, Shacham S, Mccauley D, et al. PCT Int. Appl. WO2014205389 A1. 2014;(12).
  177. Ständer S, Spellman MC, Kwon P, Yosipovitch G. The NK1 receptor antagonist serlopitant for treatment of chronic pruritus. Expert Opin Investig Drugs. 2019;28(8):659-666. doi: 10.1080/13543784.2019.1638910.
  178. Grundmann S, Ständer S. Chronic pruritus: Clinics and treatment. Ann Dermatol. 2011;23(1):1-11. doi: 10.5021/ad.2011.23.1.1.
  179. Ständer S, Siepmann D, Herrgott I, Sunderkötter C, Luger TA. Targeting the neurokinin receptor 1 with aprepitant: A novel antipruritic strategy. PLoS One. 2010;5(6):3-7. doi:10.1371/journal.pone.0010968.
  180. Lotti T, Buggiani G, Prignano F. Prurigo nodularis and lichen simplex chronicus. Dermatol Ther. 2008;21(1):42-46. doi: 10.1111/j.1529-8019.2008.00168.x.
  181. Yosipovitch G, Ständer S, Kerby MB, Larrick JW, Perlman AJ, Schnipper EF, Zhang X, Tang JY, Luger T, Steinhoff M. Serlopitant for the treatment of chronic pruritus: Results of a randomized, multicenter, placebo-controlled phase 2 clinical trial. J Am Acad Dermatol. 2018 May;78(5):882-891.e10. doi: 10.1016/j.jaad.2018.02.030. Epub 2018 Feb 17. PMID: 29462657.
  182. Chiou AS, Choi S, Barriga M, Dutt-Singkh Y, Solis DC, Nazaroff J, Bailey-Healy I, Li S, Shu K, Joing M, Kwon P, Tang JY. Phase 2 trial of a neurokinin-1 receptor antagonist for the treatment of chronic itch in patients with epidermolysis bullosa: A randomized clinical trial. J Am Acad Dermatol. 2020 Jun;82(6):1415-1421. doi: 10.1016/j.jaad.2019.09.014. Epub 2019 Sep 18. PMID: 31541747.
  183. Pariser DM, Bagel J, Lebwohl M, Yosipovitch G, Chien E, Spellman MC. Serlopitant for psoriatic pruritus: A phase 2 randomized, double-blind, placebo-controlled clinical trial. J Am Acad Dermatol. 2020;82(6):1314-1320. doi: 10.1016/j.jaad.2020.01.056.
  184. Dodson J, Lio PA. Biologics and Small Molecule Inhibitors: an Update in Therapies for Allergic and Immunologic Skin Diseases. Curr Allergy Asthma Rep. 2022;22(12):183-193. doi: 10.1007/s11882-022-01047-w.
  185. Bunda JL, DeVita RJ, Jiang J, Mills SG. U.S. Patent 20050165083 A1. 2005;1(19).
  186. Jiang J, Bunda JL, Doss GA, Chicchi GG, Kurtz MM, Tsao KL, Tong X, Zheng S, Upthagrove A, Samuel K, Tschirret-Guth R, Kumar S, Wheeldon A, Carlson EJ, Hargreaves R, Burns D, Hamill T, Ryan C, Krause SM, Eng W, DeVita RJ, Mills SG. Potent, brain-penetrant, hydroisoindoline-based human neurokinin-1 receptor antagonists. J Med Chem. 2009 May 14;52(9):3039-46. doi: 10.1021/jm8016514. PMID: 19354254.
  187. Kuethe JT, Yin J, Huffman MA, Journet M. PCT Int. Appl. WO 2007008564 A1. 2007.
  188. George DT, Gilman J, Hersh J, Thorsell A, Herion D, Geyer C, Peng X, Kielbasa W, Rawlings R, Brandt JE, Gehlert DR, Tauscher JT, Hunt SP, Hommer D, Heilig M. Neurokinin 1 receptor antagonism as a possible therapy for alcoholism. Science. 2008 Mar 14;319(5869):1536-9. doi: 10.1126/science.1153813. Epub 2008 Feb 14. PMID: 18276852.
  189. Carlin JL, Lieberman VR, Dahal A, Keefe MS, Xiao C, Birznieks G, Abell TL, Lembo A, Parkman HP, Polymeropoulos MH. Efficacy and Safety of Tradipitant in Patients With Diabetic and Idiopathic Gastroparesis in a Randomized, Placebo-Controlled Trial. Gastroenterology. 2021 Jan;160(1):76-87.e4. doi: 10.1053/j.gastro.2020.07.029. Epub 2020 Jul 18. PMID: 32693185.
  190. Welsh SE, Xiao C, Kaden AR, Brzezynski JL, Mohrman MA, Wang J, Smieszek SP, Przychodzen B, Ständer S, Polymeropoulos C, Birznieks G, Polymeropoulos MH. Neurokinin-1 receptor antagonist tradipitant has mixed effects on itch in atopic dermatitis: results from EPIONE, a randomized clinical trial. J Eur Acad Dermatol Venereol. 2021 May;35(5):e338-e340. doi: 10.1111/jdv.17090. Epub 2021 Jan 7. PMID: 33330999; PMCID: PMC8248080.
  191. Borghese A, Coffey DS, Footman PK, et al. PCT Int. Appl. WO2005042515 A1. 2005.
  192. Kobierski ME, Kopach ME, Chen P. PCT Int. Appl. WO 2008079600 A1. 2008.
  193. Kobierski ME, Kopach ME, Chen P. U.S. Patent 9708291 B2. October. 2017.
  194. Kopach, Michael E, Wilson, Thomas M, Kobierski, Michael E. PCT Int. Appl. WO2017031215 A1. 2017;(12).
  195. Perwitasari O, Johnson S, Yan X, Howerth E, Shacham S, Landesman Y, Baloglu E, McCauley D, Tamir S, Tompkins SM, Tripp RA. Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo. J Virol. 2014 Sep 1;88(17):10228-43. doi: 10.1128/JVI.01774-14. Epub 2014 Jun 25. PMID: 24965445; PMCID: PMC4136318.
  196. Jorquera PA, Mathew C, Pickens J, Williams C, Luczo JM, Tamir S, Ghildyal R, Tripp RA. Verdinexor (KPT-335), a Selective Inhibitor of Nuclear Export, Reduces Respiratory Syncytial Virus Replication In Vitro. J Virol. 2019 Feb 5;93(4):e01684-18. doi: 10.1128/JVI.01684-18. PMID: 30541831; PMCID: PMC6364025.
  197. Sandanayaka VP, Shacham S, Dilara M, Shechter S. PCT Int. Appl. WO2013019548 A1. 2016;3(12).
  198. Ando Y, Inada-Inoue M, Mitsuma A, Yoshino T, Ohtsu A, Suenaga N, Sato M, Kakizume T, Robson M, Quadt C, Doi T. Phase I dose-escalation study of buparlisib (BKM120), an oral pan-class I PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci. 2014 Mar;105(3):347-53. doi: 10.1111/cas.12350. Epub 2014 Feb 13. PMID: 24405565; PMCID: PMC4317947.
  199. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006 Aug;7(8):606-19. doi: 10.1038/nrg1879. PMID: 16847462.
  200. Rodon J, Braña I, Siu LL, et al. Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2014;32(4):670-681. doi: 10.1007/s10637-014-0082-9.
  201. Bedard PL, Tabernero J, Janku F, Wainberg ZA, Paz-Ares L, Vansteenkiste J, Van Cutsem E, Pérez-García J, Stathis A, Britten CD, Le N, Carter K, Demanse D, Csonka D, Peters M, Zubel A, Nauwelaerts H, Sessa C. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin Cancer Res. 2015 Feb 15;21(4):730-8. doi: 10.1158/1078-0432.CCR-14-1814. Epub 2014 Dec 10. PMID: 25500057.
  202. Vansteenkiste JF, Canon JL, De Braud F, Grossi F, De Pas T, Gray JE, Su WC, Felip E, Yoshioka H, Gridelli C, Dy GK, Thongprasert S, Reck M, Aimone P, Vidam GA, Roussou P, Wang YA, Di Tomaso E, Soria JC. Safety and Efficacy of Buparlisib (BKM120) in Patients with PI3K Pathway-Activated Non-Small Cell Lung Cancer: Results from the Phase II BASALT-1 Study. J Thorac Oncol. 2015 Sep;10(9):1319-1327. doi: 10.1097/JTO.0000000000000607. PMID: 26098748; PMCID: PMC4646607.
  203. Netland IA, Førde HE, Sleire L, Leiss L, Rahman MA, Skeie BS, Miletic H, Enger PØ, Goplen D. Treatment with the PI3K inhibitor buparlisib (NVP-BKM120) suppresses the growth of established patient-derived GBM xenografts and prolongs survival in nude rats. J Neurooncol. 2016 Aug;129(1):57-66. doi: 10.1007/s11060-016-2158-1. Epub 2016 Jun 9. PMID: 27283525; PMCID: PMC4972854.
  204. Baselga J, Im SA, Iwata H, Cortés J, De Laurentiis M, Jiang Z, Arteaga CL, Jonat W, Clemons M, Ito Y, Awada A, Chia S, Jagiełło-Gruszfeld A, Pistilli B, Tseng LM, Hurvitz S, Masuda N, Takahashi M, Vuylsteke P, Hachemi S, Dharan B, Di Tomaso E, Urban P, Massacesi C, Campone M. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017 Jul;18(7):904-916. doi: 10.1016/S1470-2045(17)30376-5. Epub 2017 May 30. Erratum in: Lancet Oncol. 2019 Feb;20(2):e71-e72. PMID: 28576675; PMCID: PMC5549667.
  205. Martín M, Chan A, Dirix L, O'Shaughnessy J, Hegg R, Manikhas A, Shtivelband M, Krivorotko P, Batista López N, Campone M, Ruiz Borrego M, Khan QJ, Beck JT, Ramos Vázquez M, Urban P, Goteti S, Di Tomaso E, Massacesi C, Delaloge S. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2- advanced breast cancer (BELLE-4). Ann Oncol. 2017 Feb 1;28(2):313-320. doi: 10.1093/annonc/mdw562. PMID: 27803006.
  206. Garrido-Castro AC, Saura C, Barroso-Sousa R, Guo H, Ciruelos E, Bermejo B, Gavilá J, Serra V, Prat A, Paré L, Céliz P, Villagrasa P, Li Y, Savoie J, Xu Z, Arteaga CL, Krop IE, Solit DB, Mills GB, Cantley LC, Winer EP, Lin NU, Rodon J. Phase 2 study of buparlisib (BKM120), a pan-class I PI3K inhibitor, in patients with metastatic triple-negative breast cancer. Breast Cancer Res. 2020 Nov 2;22(1):120. doi: 10.1186/s13058-020-01354-y. PMID: 33138866; PMCID: PMC7607628.
  207. Pick T, Barsanti P, Iwanowicz E, et al. PCT Int. Appl. WO 2007084786 A1. 2007;2007(July).
  208. Burger MT, Pecchi S, Wagman A, Ni ZJ, Knapp M, Hendrickson T, Atallah G, Pfister K, Zhang Y, Bartulis S, Frazier K, Ng S, Smith A, Verhagen J, Haznedar J, Huh K, Iwanowicz E, Xin X, Menezes D, Merritt H, Lee I, Wiesmann M, Kaufman S, Crawford K, Chin M, Bussiere D, Shoemaker K, Zaror I, Maira SM, Voliva CF. Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class I PI3 Kinase Inhibitor for Treating Cancer. ACS Med Chem Lett. 2011 Aug 26;2(10):774-9. doi: 10.1021/ml200156t. PMID: 24900266; PMCID: PMC4017971.
  209. Zhao JJ, Wang Q. PCT Int. Appl. WO2012109423 A1. 2012;48104(12).
  210. Calienni JV, Cruz MD La, Flubacher D, et al. PCT Int. Appl. WO2012044727 A2. 2012;(12).
  211. Flubacher D, Bieri N, Acemaglu M, et al. PCT Int. Appl. WO2014064058 Al. 2014;(12).
  212. Hebeisen P, Beaufils F, Langlois JB. PCT Int. Appl. WO2015162084 A1. 2015;3(12).
  213. Yong X. U.S. Patent 20160264546 A1. Published online 2016:6. doi:10.26434/chemrxiv.11346962
  214. Wu F. PCT Int. Appl. WO2016050201. 2016;(12).
  215. Reiner Ž. Triglyceride-Rich Lipoproteins and Novel Targets for Anti-atherosclerotic Therapy. Korean Circ J. 2018 Dec;48(12):1097-1119. doi: 10.4070/kcj.2018.0343. PMID: 30403015; PMCID: PMC6221868.
  216. Yan JH, Meyers D, Lee Z, Danis K, Neelakantham S, Majumdar T, Rebello S, Sunkara G, Chen J. Pharmacokinetic and pharmacodynamic drug-drug interaction assessment between pradigastat and digoxin or warfarin. J Clin Pharmacol. 2014 Jul;54(7):800-8. doi: 10.1002/jcph.285. Epub 2014 Mar 18. PMID: 24619917.
  217. Meyers CD, Tremblay K, Amer A, Chen J, Jiang L, Gaudet D. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis. 2015;14(1):1-9. doi: 10.1186/s12944-015-0006-5.
  218. Meyers CD, Amer A, Majumdar T, Chen J. Pharmacokinetics, pharmacodynamics, safety, and tolerability of pradigastat, a novel diacylglycerol acyltransferase 1 inhibitor in overweight or obese, but otherwise healthy human subjects. J Clin Pharmacol. 2015 Sep;55(9):1031-41. doi: 10.1002/jcph.509. Epub 2015 May 27. PMID: 25854859.
  219. Müller AC, Kanfer I. Potential pharmacokinetic interactions between antiretrovirals and medicinal plants used as complementary and African traditional medicines. Biopharm Drug Dispos. 2011 Nov;32(8):458-70. doi: 10.1002/bdd.775. PMID: 22024968.
  220. Zhou G, Zorn N, Ting P, Aslanian R, Lin M, Cook J, Lachowicz J, Lin A, Smith M, Hwa J, van Heek M, Walker S. Development of novel benzomorpholine class of diacylglycerol acyltransferase I inhibitors. ACS Med Chem Lett. 2014 Mar 1;5(5):544-9. doi: 10.1021/ml400527n. PMID: 24900877; PMCID: PMC4027756.
  221. Serrano-Wu MH, Kwak YS, Liu W. PCT Int. Appl. WO 2007126957 A2. 2008;2008(September):50-80.
  222. Pivonello R, Bancos I, Feelders RA, Kargi AY, Kerr JM, Gordon MB, Mariash CN, Terzolo M, Ellison N, Moraitis AG. Relacorilant, a Selective Glucocorticoid Receptor Modulator, Induces Clinical Improvements in Patients With Cushing Syndrome: Results From A Prospective, Open-Label Phase 2 Study. Front Endocrinol (Lausanne). 2021 Jul 14;12:662865. doi: 10.3389/fendo.2021.662865. Erratum in: Front Endocrinol (Lausanne). 2022 Apr 27;13:899616. PMID: 34335465; PMCID: PMC8317576.
  223. Hunt H, Donaldson K, Strem M, Zann V, Leung P, Sweet S, Connor A, Combs D, Belanoff J. Assessment of Safety, Tolerability, Pharmacokinetics, and Pharmacological Effect of Orally Administered CORT125134: An Adaptive, Double-Blind, Randomized, Placebo-Controlled Phase 1 Clinical Study. Clin Pharmacol Drug Dev. 2018 May;7(4):408-421. doi: 10.1002/cpdd.389. Epub 2017 Oct 2. PMID: 28967708; PMCID: PMC5947602.
  224. Hunt HJ, Belanoff JK, Walters I, Gourdet B, Thomas J, Barton N, Unitt J, Phillips T, Swift D, Eaton E. Identification of the Clinical Candidate (R)-(1-(4-Fluorophenyl)-6-((1-methyl-1H-pyrazol-4-yl)sulfonyl)-4,4a,5,6,7,8-hexahydro-1H-pyrazolo[3,4-g]isoquinolin-4a-yl)(4-(trifluoromethyl)pyridin-2-yl)methanone (CORT125134): A Selective Glucocorticoid Receptor (GR) Antagonist. J Med Chem. 2017 Apr 27;60(8):3405-3421. doi: 10.1021/acs.jmedchem.7b00162. Epub 2017 Apr 17. PMID: 28368581.
  225. Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses. 2020 Sep 22;12(9):1058. doi: 10.3390/v12091058. PMID: 32972027; PMCID: PMC7551028.
  226. Auchus RJ, Grauer A, Moraitis A. MON-163 A Phase 3, Double-Blind, Randomized, Placebo-Controlled Study to Assess the Efficacy and Safety of a Selective Glucocorticoid Receptor Modulator, Relacorilant, in Patients with Autonomous Cortisol Secretion Due to Cortisol-Secreting Adrenal Adenoma(s)/Hyperplasia. J Endocr Soc. 2020 May 8;4(Suppl 1):MON-163. doi: 10.1210/jendso/bvaa046.1409. PMCID: PMC7208039.
  227. Christoffers J, Scharl H. Copper-Catalyzed Asymmetric Michael Reactions with α-Amino Acid Amides: Synthesis of an Optically Active Piperidine Derivative. European J Org Chem. 2002;2002(9):1505-1508. doi: 10.1002/1099-0690(200205)2002:9<1505::AID-EJOC1505>3.0.CO;2-K.
  228. Clark RD, Ray NC, Blaney PM, Urley C, Williams K. PCT Int. Appl. WO2005087769A1. 2005.
  229. Tavapadon - Cerevel Therapeutics. Adis Insight. Springer Nature Switzerland AG.
  230. Cerri S, Blandini F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson's disease. Expert Opin Pharmacother. 2020 Dec;21(18):2279-2291. doi: 10.1080/14656566.2020.1805432. Epub 2020 Aug 17. PMID: 32804544.
  231. Hall A, Provins L, Valade A. Novel Strategies To Activate the Dopamine D1 Receptor: Recent Advances in Orthosteric Agonism and Positive Allosteric Modulation. J Med Chem. 2019 Jan 10;62(1):128-140. doi: 10.1021/acs.jmedchem.8b01767. Epub 2018 Dec 27. PMID: 30525590.
  232. Gurrell R, Duvvuri S, Sun P, DeMartinis N. A Phase I Study of the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Novel Dopamine D1 Receptor Partial Agonist, PF-06669571, in Subjects with Idiopathic Parkinson's Disease. Clin Drug Investig. 2018 Jun;38(6):509-517. doi: 10.1007/s40261-018-0632-6. PMID: 29478239.
  233. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson's disease. A community-based study. Brain. 2000 Nov;123 ( Pt 11):2297-305. doi: 10.1093/brain/123.11.2297. PMID: 11050029.
  234. Sohur US, Gray DL, Duvvuri S, Zhang Y, Thayer K, Feng G. Phase 1 Parkinson's Disease Studies Show the Dopamine D1/D5 Agonist PF-06649751 is Safe and Well Tolerated. Neurol Ther. 2018 Dec;7(2):307-319. doi: 10.1007/s40120-018-0114-z. Epub 2018 Oct 25. PMID: 30361858; PMCID: PMC6283789.
  235. Riesenberg R, Werth J, Zhang Y, Duvvuri S, Gray D. PF-06649751 efficacy and safety in early Parkinson’s disease: A randomized, placebo-controlled trial. Ther Adv Neurol Disord. 2020;13:1-11. doi: 10.1177/1756286420911296.
  236. A Phase 1, Randomized, Multiple-Dose, Crossover Trial in Participants With Parkinson’s Disease to Evaluate the Clinical Bioequivalence Between Tavapadon Tablets. Identifier NCT05610189. National Library of Medicine (US). 2022.
  237. Brodney MA, Davoren JE, Dounay AB, et al. PCT Int. Appl. WO 2014207601. 2014;(12).


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search